[1] T.S. Angell, R.E. Kleinman, J. Král:
Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402.
MR 0981880
[2] K. Arbenz:
Integralgleichungen für einige Randwertprobleme für Gebiete mit Ecken. Promotionsarbeit Nr. 2777, Eidgenössische Technishe Hochschule in Zürich 1958, 1–41.
MR 0101416 |
Zbl 0084.09603
[3] M. Brelot:
Élements de la théorie classique du potential. Les cours de Sorbone, Paris, 1959.
MR 0106366
[4] Ju. D. Burago, V.G. Maz’ya: Some questions in potential theory and function theory for regions with irregular boundaries (Russian). Zapiski nauč. sem. Leningrad. otd. MIAN 3 (1967).
[5] Ju. D. Burago, V.G. Maz’ya and V.D. Sapožnikova:
On the theory of potentials of a double and a simple layer for regions with irregular boundaries (Russian). Problems Math. Anal. Boundary Value Problems Integr. Equations. (Russian), 3–34, Izdat. Leningrad. Univ., Leningrad, 1966.
MR 0213596
[6] T. Carleman: Über das Neumann-Poincarésche Problem für ein Gebeit mit Ecken, Inaugural-Dissertation. Uppsala, 1916.
[7] I.I. Daniljuk:
Nonregular Boundary Value Problems in the Plane. Nauka, Moskva, 1975. (Russian)
MR 0486546
[8] E. De Giorgi:
Su una teoria generale della misura $(r-1)$-dimensionale in uno spazi ad $r$ dimensioni. Annali di Mat. Pura ed Appl. Ser. 4, 36 (1954), 191–213.
DOI 10.1007/BF02412838 |
MR 0062214
[9] E. De Giorgi:
Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazi ad $r$ dimensioni. Ricerche Mat. 4 (1955), 95–113.
MR 0074499
[10] M. Dont, E. Dontová:
Invariance of the Fredholm radius of an operator in potential theory. Čas. pěst. mat. 112 (1987), no. 3, 269–283.
MR 0905974
[11] N. Dunford, J.T. Schwarz: Linear Operators. Interscience, New York, 1963.
[13] E. Fabes:
Layer potential methods for boundary value problems on Lipschitz domains, in J. Král, J. Lukeš, I. Netuka and J. Veselý (eds.): Potential Theory. Surveys and Problems. Proceedings, Prague 1987. Lecture Notes in Mathematics 1344. Springer-Verlag, Berlin-Heidelberg-New York, 1988.
MR 0973881
[15] E. Fabes, M. Sand, J.K. Seo:
The spectral radius of the classical layer potentials on convex domains. Partial Differential Equations With Minimal Smoothness and Applications, 129–137, IMA Vol. Math. Appl. 42, Springer, New York, 1992.
DOI 10.1007/978-1-4612-2898-1_12 |
MR 1155859
[19] N.V. Grachev:
Representations and estimates for inverse operators of the potential theory integral equations in a polyhedron. Potential Theory (Nagoya, 1990), 201–206. de Gruyter, Berlin, 1992.
MR 1167235
[20] N.V. Grachev, V.G. Maz’ya:
On the Fredholm radius for operators of double-layer type on the piece-wise smooth boundary (Russian). Vest. Leningr. un. mat. mech. (1986), no. 4, 60–64.
MR 0880678
[21] N.V. Grachev, V.G. Maz’ya:
Representations and estimates for inverse operators of the potential theory integral equations on surfaces with conic points. Soobstch. Akad. Nauk Gruzin SSR 132 (1988), 21–23. (Russian)
MR 1020233
[22] N.V. Grachev, V.G. Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Preprint N26, Akad. Nauk SSSR. Inst. of Engin. Studies, Leningrad, 1989. (Russian)
[23] N.V. Grachev, V.G. Maz’ya: On invertibility of the boundary integral operators of elasticity on surfaces with conic points in the spaces generated by norms $C$, $C^\alpha $, $L_p$, Preprint N30, Akad. Nauk SSSR, Inst. of Engin. Studies, Leningrad, 1990. (Russian)
[24] P.R. Halmos:
Finite-Dimensional Vector Spaces. D. van Nostrand, Princeton-Toronto--London-New York, 1963.
MR 0089819 |
Zbl 0107.01501
[25] D.S. Jerison and C.E. Kenig:
The Dirichlet problem in non smooth domains. Annals of Mathematics 113 (1981), 367–382.
DOI 10.2307/2006988 |
MR 0607897
[27] K. Jörgens:
Lineare Integraloperatoren. B.G. Teubner, Stuttgart, 1970.
MR 0461049
[28] J. Král:
Integral operators in potential theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin-Heidelberg-New York, 1980.
MR 0590244
[29] J. Král:
The Fredholm radius of an operator in potential theory. Czechoslovak Math. J. 15(90) (1965), 454–473, 565–588.
MR 0190363
[30] J. Král:
Flows of heat and the Fourier problem. Czechoslovak Math. J. 20(95) (1970), 556–597.
MR 0271554
[31] J. Král:
Note on sets whose characteristic functions have singed measure for their partial derivatives. Čas. pěst. mat. 86 (1961), 178–194. (Czech)
MR 0136697
[33] J. Král, W.L. Wendland:
Some example concerning applicability of the Fredholm-Radon method in potential theory. Aplikace matematiky 31 (1986), 293–308.
MR 0854323
[34] N.L. Landkof:
Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian)
MR 0214795
[35] V.G. Maz’ya: Boundary integral equations. Sovremennyje problemy matematiki, fundamental’nyje napravlenija, t. 27. Viniti, Moskva, 1988. (Russian)
[36] V.G. Maz’ya: Boundary integral equations, Encyclopedia of Mathematical Sciences. vol. 27, Springer-Verlag, 1991.
[37] V.G. Maz’ya, B.A. Plamenevsky:
The first boundary-value problem for the classical equations of the mathematical physics in domain with piece-wise smooth boundary. I, II. Z. Anal. Anwend. 2 (1983), no. 4, 335–359, No. 6, 523–551. (Russian)
DOI 10.4171/ZAA/83 |
MR 0719176
[38] W. McLean:
Boundary integral methods for the Laplace equation. Thesis. Australian National University, 1985.
MR 0825529
[39] D. Medková:
On the convergence of Neumann series for noncompact operators. Czechoslovak Math. J. 41(116) (1991), 312–316.
MR 1105448
[40] D. Medková:
Invariance of the Fredholm radius of the Neumann operator. Čas. pěst. mat. 115 (1990), no. 2, 147–164.
MR 1054002
[41] D. Medková:
On essential norm of Neumann operator. Mathematica Bohemica 117 (1992), no. 4, 393–408.
MR 1197288
[42] S.G. Michlin: Integralnyje uravnenija i ich prilozhenija k nekotorym problemam mekhaniki, matematicheskoj fiziki i tekhniki. Moskva, 1949.
[43] I. Netuka:
The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205–211.
MR 0287021 |
Zbl 0215.42602
[44] I. Netuka:
Generalized Robin problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 312–324.
MR 0294673 |
Zbl 0241.31008
[45] I. Netuka:
An operator connected with the third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 462–489.
MR 0316733 |
Zbl 0241.31009
[46] I. Netuka:
The third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 554–580.
MR 0313528 |
Zbl 0242.31007
[47] J. Plemelj: Potentialtheoretische Untersuchungen. Leipzig, 1911.
[48] J. Radon: Über lineare Funktionaltransformationen und Funktionalgleichungen. Collected Works. vol. 1, 1987.
[49] J. Radon: Über Randwertaufgaben beim logarithmischen Potential. Collected Works. vol. 1, 1987.
[50] A. Rathsfeld:
The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron: The panel method. Applicable Analysis 45 (1992), no. 1–4, 135–177.
DOI 10.1080/00036819208840093 |
MR 1293594
[52] S. Rempel and G. Schmidt:
Eigenvalues for spherical domains with corners via boundary integral equations. Integral Equations Oper. Theory 14 (1991), 229–250.
DOI 10.1007/BF01199907 |
MR 1090703
[53] F. Riesz, B. Sz. Nagy: Leçons d’analyse fonctionelle. Budapest, 1952.
[54] S. Saks:
Theory of the Integral. Hafner Publishing Comp., New York, 1937.
Zbl 0017.30004
[55] V.D. Sapožnikova:
Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35–44. Izdat. Leningrad. Univ., Leningrad, 1966.
MR 0213597
[56] M. Schechter:
Principles of Functional Analysis. Academic Press, 1973.
MR 0467221
[59] A.E. Taylor: Introduction to Functional Analysis. New York, 1967.
[61] K. Yosida:
Functional Analysis. Springer-Verlag, Berlin, 1965.
Zbl 0126.11504