Article
Summary:
Let $D$ be a domain in $\mathbb{C}^2$. For $w \in \mathbb{C} $, let $D_w = \lbrace z \in \mathbb{C} \mid (z,w) \in D \rbrace $. If $f$ is a holomorphic and square-integrable function in $D$, then the set $E(D,f)$ of all $w$ such that $f(.,w)$ is not square-integrable in $D_w$ is of measure zero. We call this set the exceptional set for $f$. In this note we prove that for every $0<r<1$,and every $G_\delta $-subset $E$ of the circle $C(0,r) = \lbrace z \in \mathbb{C} \mid | z | =r \rbrace $,there exists a holomorphic square-integrable function $f$ in the unit ball $B$ in $\mathbb{C}^2$ such that $E(B,f) = E.$
References:
[1] P. Jakóbczak:
The exceptional sets for functions from the Bergman space. Portugaliae Mathematica 50, No 1 (1993), 115–128.
MR 1300590
[2] P.Jakóbczak:
The exceptional sets for functions of the Bergman space in the unit ball. Rend. Mat. Acc. Lincei s.9, 4 (1993), 79–85.
MR 1233394 |
Zbl 0788.46061