Previous |  Up |  Next

Article

References:
[1] N. Aronszajn: Le correspondant topologique de l’unicité dans la theorié des équations différentielles. Ann. of Math. 43 (1942), 730–748. DOI 10.2307/1968963 | MR 0007195 | Zbl 0061.17106
[2] D. Bugajewski and S. Szufla: On the Aronszajn property for differential equations and the Denjoy integral. (to appear). MR 1384852
[3] P.S. Bullen and D.N. Sharkel: On the solution of $(y/x)_{ap}=f(x,y)$. J. Math. Anal. Appl. 127 (1987), 365–376. MR 0915063
[4] P.S. Bullen and R. Výborný: Some applications of a theorem of Marcinkiewicz. Canad. Math. Bull. 34 (1991), 165–174. DOI 10.4153/CMB-1991-027-x | MR 1113292
[5] V.G. Celidze and A.G. Dzvarsheishvili: Theory of the Denjoy Integral and Some of Its Applications. Tbilisi, 1987. (Russian)
[6] T.S. Chew and F. Flordeliza: On $x^{\prime }=f(t,x)$ and Henstock-Kurzweil integrals. Differential and Integral Equations 4 (1991), no. 3, 861–868. MR 1108065
[7] R. Henstock: Definitions of Riemann type of the variational integral. Proc. London Math. Soc. 3 (1961), no. 11, 402–418. MR 0132147
[8] R. Henstock: Lectures on the Theory of Integration. World Scientific, Singapore, 1988. MR 0963249 | Zbl 0668.28001
[9] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 618–648. MR 0111875 | Zbl 0090.30002
[10] S. Saks: Theory of the Integral. Monografie Matematyczne, Warszawa, Lwów, 1937. Zbl 0017.30004
[11] Š. Schwabik: The Perron integral in ordinary differential equations. Differential and Integral Equations 6 (1993), no. 4, 863–882. MR 1222306 | Zbl 0784.34006
[12] G. Vidossich: A fixed-point theorem for function spaces. J. Math. Anal. and Appl. 36 (1971), 581–587. DOI 10.1016/0022-247X(71)90040-0 | MR 0285945 | Zbl 0194.44903
Partner of
EuDML logo