[2] J.C. Bermond, N. Homobono and C. Peyrat:
Large fault-tolerant interconnection networks. Graphs and Combinatorics 5 (1989), 107–123.
DOI 10.1007/BF01788663 |
MR 0998267
[3] G. Chartrand and L. Lesniak:
Graphs and Digraphs. Second edition, Wadsworth, 1986.
MR 0834583
[4] G. Chartrand and R.E. Pippert:
Locally connected graphs. Časopis Pěst. Mat. 99 (1974), 158–163.
MR 0398872
[5] Zhibo Chen:
On locally $n\text{-(arc)}$-strong digraphs. (to appear).
MR 1310403
[6] Zhibo Chen:
Local connectedness of digraphs. Graph Theory, Combinatorics, and Applications: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs, Vol. 1, Y. Alavi and A. Schwenk (eds.), John Willey & Sons, New York, 1995, pp. 195–200.
MR 1405809
[8] W. Mader:
Connectivity and edge-connectivity in finite graphs. Surveys in Combinatorics: Proc. Seventh British Combinatorial Conference, Cambridge 1979, London, Math. Soc. Lec. Note Ser. 38, 1979, pp. 66–95.
MR 0561307 |
Zbl 0404.05040
[10] L. Nebeský:
On locally quasiconnected graphs and their upper embeddability. Czechoslovak Math. J. 35 (1985), no. 110, 162–166.
MR 0779344
[11] L. Nebeský:
$N_2$-locally connected graphs and their upper embeddability. Czechoslovak Math. J. 41 (1991), no. 116, 731–735.
MR 1134962
[12] Z. Ryjáček: On graphs with isomorphic, non-isomorphic and connected $N_2$-neighborhoods. Časopis Pěst. Mat. 112 (1987), 66–79.
[13] J. Sedláček:
Local properties of graphs. Časopis Pěst. Mat. 106 (1981), 290–298. (Czech)
MR 0629727
[14] D.W. Vanderjagt:
Sufficient conditions for locally connected graphs. Časopis Pěst. Mat. 99 (1974), 400–404.
MR 0543786 |
Zbl 0294.05123