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ON MINIMUM LOCALLY n-(ARC)-STRONG DIGRAPHS 

ZHIBO C H E N 1 , McKeesport 

(Received September 9, 1994) 

1. INTRODUCTION 

Extensive studies have been devoted to the (global) connectedness in graphs and 
digraphs, one of the most important properties that a graph or digraph can possess 
(see, for instance, the surveys [2] and [8]). In 1974, G. Chartrand and R.E. Pippert 
[4] first defined locally connected and locally n-connected graphs and obtained some 
interesting results. Following [4], a variety of research [9-14] has been devoted to 
locally connected graphs. Recently, we first extended the study of local connectedness 
to digraphs (see [5] and [6]). In [5], we defined the locally n-strong digraphs and the 
locally n-arc-strong digraphs (See section 2 for definitions.), generalized some results 
of Chartrand and Pippert, and established relationships between local connectedness 
and global connectedness in digraphs, among which are the following theorems: 

Theorem A. Any weakly connected and locally n-arc-strong digraph is (n + 1)-
arc-strong. 

Theorem B. Any weakly connected and locally n-strong digraph is (n+1)-strong. 

The aim of this paper is to further the study of locally n-(arc)-strong digraphs. 
We shall determine the minimum locally n-(arc)-strong digraphs and the minimum 
locally n-(arc)-strong oriented graphs. [Note: A minimum digraph with some prop­
erty / ^ i s a digraph with minimum number of arcs in the digraphs with the property 
& which have minimum number of vertices.] Moreover, some results concerning 
tournaments are obtained, and the converses of the above Theorems A and B are 
shown to be not true. 

1 This research is supported in part by the RDG grant of the Pennsylvania State University. 
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2 . DEFINITIONS 

We follow the standard terminology and notation. A digraph D = (V(D), A(D)) 

is a finite nonempty set V(D) of vertices together with a (possibly empty) set A(D) 

of ordered pairs of distinct vertices of D called arcs. An ordered pair (u,v) G A(D) 

is also called an arc from a to v. A digraph D is said to be weakly connected 

if its underlying undirected graph is connected. If there is a dipath from u to v 

for any pair u and v of vertices in D, then the digraph D is said to be strongly 

connected, or simply said to be strong. The subdigraph induced by a nonempty 

subset IV C V(D) is denoted (W)D. Let u, v G V(L>). We say u is a neighbor 

of v if (u,v) G A(D) or (v,u) G A(D). The set of neighbors of v in D is denoted 

ND(C). The induced subdigraph (ND(V))D is said to be the neighborhood of v. 

The outdegree of v is denoted as od?j and the indegree of v is denoted as id/ ' . Let 

S(D) = min { idn , odE} . If id v = odU = 5(D) for all v G V(D), D is said to be 
v£V(D) 

diregular. Let S and T be two disjoint proper subsets of V(D). We use (S,T)p 

to denote the set of arcs (s,t) in D with 5 G 5 and l G T. When there is no 

confusion, we may simply use (IV), (N(v)) and (S,T) to denote the corresponding 

(W)D, (ND(V))D and (S,T)o, respectively 

Let n ^ 1. A digraph D is said to be 71-strong [n-arc-strong, resp.] if the removal 

of fewer than n vertices [arcs, resp.] always results in a nontrivial strong digraph. 

Clearly, every ?I-strong digraph is n-arc-strong . Every //-strong [n-arc-strong, resp.] 

digraph is also 7?i-strong [?77-arc-strong, resp.] for 1 ^ /// < n. It should also be 

noted tha t D is 1-strong iff D is 1-arc-strong iff D is a nontrivial strong digraph. 

The trivial strong digraph consisting of a single vertex is the only digraph that is 

strong but not 1-strong (or not 1-arc-strong). 

A digraph D is said to be locally strong [locally //-strong, locally n-arc-strong, 

resp.] if the neighborhood of every vertex of D is strong [//-strong, 72-arc-strong, 

resp.]. 

The associated digraph of a graph G, denoted as D(G), is the digraph obtained 

from G when each edge c of G is replaced by a pair of oppositely oriented arcs with 

the same ends as e. 

For other terminologies not defined here we refer the reader to the book [3]. 

3. M A I N RESULTS 

T h e o r e m 1. The associated digraph D(Kn+2) of the complete graph Kn±2 i* 

both the unique minimum locally n-strong digraph and the unique minimum locally 

n-arc-strong digraph. 
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Before giving the proof of Theorem 1, we list some needed simple facts as the 

following propositions. 

P r o p o s i t i o n 1. Let D be an n-(arc)-strong digraph. Then S(D) ^ n, \V(D)\ ^ 

n + 1, and \A(D)\ ^ n(n + 1). 

The proof is easy and is omitted here. 

From Proposition 1, we immediately get 

P r o p o s i t i o n 2. The associated digraph D(Kn+i) is both the unique minimum 

n -strong digraph and the unique minimum n-arc-strong digraph. 

P r o o f . Clearly, D(A^n+i) is ??-strong and ??-arc-strong. Both the vertex number 

and the arc number reach the lower bounds given in Proposition 1. D 

P r o p o s i t i o n 3. Let D be a locally n-(arc)-strong digraph. Then 6(D) ^ n + 1, 

\V(D)\ > n + 2, and \A(D)\ ^ (n + l)(n + 2). 

P r o o f . By Theorem A and Proposition 1. D 

Now the proof of Theorem 1 goes as follows. 

P r o o f of T h e o r e m 1. From Proposition 2, D(Kn+2) is locally n-strong 

and locally ?i-arc-strong. Since both the vertex number and the arc number of 

D(Kn+2) reach the lower bounds given in Proposition 3, D(Kn+2) is a minimum 

locally ??-strong and minimum locally ?i-(arc)-strong digraph. 

The uniqueness is easily seen from the following: 

If D is a minimum locally ??-(arc)-strong digraph, then by Proposition 3, 6(D) ^ 

n + 1. Note tha t |V(.D)| must be not greater than the vertex number of D(Kn+2). 

Then, |V(L>)| = n + 2. Thus we must have od v = idU = ??, -f 1 for all vertices in D. 

Therefore, D = D(Kn+2). D 

Now we turn to determine the minimum locally ??-(arc)-strong oriented graphs. 

Recall tha t a digraph is said to be an oriented graph if its underlying graph is a 

simple graph. Such digraphs are widely used in applications of graph theory. 

T h e o r e m 2. A digraph D is a minimum locally n-arc-strong oriented graph if 

and only if D is a diregular tournament of 2n + 3 vertices. 

In the proof, we need the following lemmas where Lemma 1 is a rewritten version 

of a known result in [1], 

L e m m a 1. Let D be an oriented graph. If 6(D) ^ I | K ( Z ^ ) | + 2 I, then D is 6(D)-

arc-strong. 

319 



Lemma 2. Let D be a locally n-arc-strong oriented graph. Then S(D) ^ n + 1, 
\V(D)\ ^ 2n + 3, and \A(D)\ ^ (n + l)(2n + 3). 

P r o o f . By Propositions 3, S(D) ^ n + 1. Then the other two inequalities 
immediately follow since D is an oriented graph. D 

Now the proof of Theorem 2 goes as follows. 

P r o o f of T h e o r e m 2. We first prove the sufficiency. Let D be a diregular 
tournament of 2n + 3 vertices. By Lemma 1, it is easy to see that every neighborhood 
of a vertex in D is n-arc-strong. So, D is locally n-arc-strong. Since |V(.D)| = 2n + 3 
and -4(F)) = (n + l)(2n + 3), D is a minimum locally n-arc-strong oriented graph by 
Lemma 2. 

Now we prove the necessity. Let D be a minimum locally ?i-arc-strong oriented 
graph. Since we have proved that a diregular tournament of 2n + 3 vertices is a 
minimum locally n-arc-strong oriented graph, we have |V(-D)| = 2n + 3, |-4(.D)| = 
(n + l)(2n + 3). By Lemma 2, S(D) ^ n + 1. Then we must have id v — od v = n + 1 
for any vertex v in D. Therefore, D is a diregular tournament of 2n + 3 vertices. 

D 

For the minimum locally 7i-strong oriented graphs, we have the following result. 

Theorem 3. Every minimum locally n-strong oriented graph is a diregular tour­

nament of 2n + 3 vertices. 

Before giving the proof we need to give a lemma, which also has its own interest. 

Lemma 3. Let D be a tournament. Then D is locally n-strong if and only if D 

is (n + 1)-strong. 

P r o o f . The necessity is immediately seen from Theorem B. We only need to 

show the sufficiency 

Assume there is a tournament D which is (n + 1)-strong but not locally n-strong. 
Then, there is a vertex v in D such that (N(v)) is not n-strong. Thus, we can find 
a proper subset S of N(v) such that | 5 | ^ n — 1 and (N(v)) — S is not strong. Let 
S' = 5 U {v}. Then \S'\ ^ n, and D - S' = (N(v)) - S since D is a tournament. 
Thus, D — S' is not strong, which contradicts the assumption that D is (n + l)-strong. 

It completes the proof of Lemma 3. D 

Now we prove Theorem 3 as follows. 

P r o o f of T h e o r e m 3. First we claim that for any positive integer n, 
there exists a diregular tournament of 2n + 3 vertices which is locally n-strong. For 
instance, we may consider the right Cayley digraph L(Z>m+z, {1 ,2 , . . . , n + 1}) which 
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is a diregular tournament of 2 n f 3 vertices. (Recall that for an additive group G and 
S CG\ {0}, the right Cayley digraph L(C, S) is a digraph D with V(D) = G and 
A(D) — {(x,x + y): y E S}.) By a result of Y. O. Hamidoune [7, Proposition 5.1], 
L(Z2n+3, {1, 2 , . . . , n -f 1}) is (n + l)-strong. Then it is locally ?7,-strong by Lemma 3. 
So, our claim is true. 

Let D be a minimum locally n-strong oriented graph. By the above claim, 
\V(D)\ ^ 2n f 3 and \A(D)\ ^ (n + l)(2?i f 3). Then by Lemma 2, we must 
have \V(D)\ = 2n + 3 and \A(D)\ = (n + l)(2n + 3). Moreover, from Lemma 2, 
S(D) ^ n + 1. Then we must have idD = odD = n + 1 for every vertex v in D. 
Therefore, D is a diregular tournament of 2n + 3 vertices. • 

Remark 1, From Lemma 3, it seems natural to pose the following conjecture: 

Let D be a tournament. Then D is locally ?i-arc-strong if and only if D is (n + 1)-

arc-strong. 

However, this conjecture is false, which can be seen from Proposition 4 given at 
the end of this paper. 

Note that Theorem 3 only gives a result parallel to the necessity part of Theorem 2. 
In fact, the converse of Theorem 3 does not hold for n > 3. It can be seen from the 
following result. 

Theorem 4. For any integer n ^ 3, there exists a diregular tournament of2n + 3 

vertices which is not locally n-strong. 

P r o o f . We proceed in two steps. 
Step 1. By induction on n, show that there is a diregular tournament D2n+3 of 

2n + 3 vertices satisfying the following conditions: V(D2n+s) = Xn U Yn U C where 
Xn, Yn and C are pair wise disjoint, \Xn\ = \Yn\ = n and (C) is a dicycle of length 3; 
and A(D2n+3) D (Xn,C) U (C,Yn). 

For ?i = 3, the desired DQ can be constructed as follows. Take three pair wise 
disjoint dicycles of length 3 and denote their vertex sets as Xj, Y3 and C. Then add 
all arcs in (Ar3,C) U (C, Y3) U (Y^,X^). It can be easily verified that this digraph is 
the desired DQ. 

Now, assume that D2/C+3 has been constructed for k ^ 3. We construct a new 
tournament of two more vertices as follows. First, we add two new vertices x and y 
and add arcs (y, x)U({x}, C)U(C, {y}) so that we have odx —iclx = 2, idy — ody — 2 
and odU = idU for every v E C. Then, we arbitrarily take a subset 5 C Xk U Yk 
with \S\ = k + 1, and let S = (Xk U Yk) - S. Clearly, \S\ - \S\ = 2. Then we add arcs 
(5, {*}) U ({x}, S) U ({y}, S) U (5, {y}). Let K,+i - Xk U {x} and Yfc+1 =YkU {y}. 
Then it is easily seen that the obtained digraph is the desired D2n+z. This completes 
the induction. 
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Step 2. Show tha t D-2n+3 is not locally 7i-strong. 

Let D — D'2n+3 — Xn. Then V(D) can be decomposed as two disjoint subsets C 

and Yn. Since (Yn,C) — 0, D is not strong. Note that \Xn\ — n. Then we see that 

L)2?x+3 is not (n + l)-strong. Hence, it is not locally //-strong by Theorem B. 

It completes the proof of Theorem 4. • 

R e m a r k 2. The condition n ^ 3 in Theorem 4 is necessary since any diregular 

tournament of 5 (7, resp.) vertices is easily seen to be locally 1-strong (locally 2-

strong, resp.). Therefore, the converse of Theorem 3 only holds for n = 1, 2. 

R e m a r k 3 . It should be noted that the conclusion in Lemma 3 is not t rue for 

general digraphs, i.e., the converses of Theorems A and B are not true, which can 

be seen from the associated digraphs D(Kn+\yn+k) of the complete bipart i te graphs 

An+l,n+fc ( W ^h k ^ 1). 

It is easy to see the following facts: 

(a) G is connected iff D(G) is strong; 

(b) G is 7i-connected iff D(G) is 7i-strong; 

(c) G is 7i-edge-connected iff D(G) is 7i-arc-strong; 

(d) G is locally n-connected iff D(G) is locally n-strong; 

(e) G is locally n-edge-connected iff D(G) is locally u-arc-strong (Note: G is said 

to be locally 7i-edge-connected if the neighborhood of every vertex of G is 7i-edge-

connected.) 

From these relationships between G and D(G), we can easily see tha t D(Kn+\,n+k) 

is (7i + l )-s trong and (7i + l)-arc-strong but not locally n-(arc)-strong, since Kn+y^n+k 

(k ^ 1) is (n + l)-connected and (71 + 1)-edge-connected but not locally 71-(edge) -

connected. 

Finally, let us go back to the conjecture mentioned earlier. It is disproved by the 

following result: 

P r o p o s i t i o n 4 . For any integer n ^ 1, there is a tournament which is (n + 1)-

arc-strong but not locally n-arc-strong. 

P r o o f . Let D be a diregular tournament of 2// + 3 vertices. Let 5 be a subset 

of V(D) with \S\ = n - 1, and let 5 = V(D) - S. Then | 5 | = n + 4. Let D{ be 

an isomorphic copy of D under the isomorphism <D: V(D) —> V(D\). Let S\ = ^p(S) 

and S\ — <p(S). Then we extend the digraph D U D\ to a tournament H by adding 

arcs between V(D) and V(DY) so tha t it satisfies the condition (V(D),V(D\)) — 

{(x,(p(x))\x G 5 } . Then by Lemma 1 of [5] (which says that a digraph D is n-

arc-strong if and only if \(S, S)o\ ^ n for every nonempty proper subset 5 of V(D) 

(where 5 = V(D) - 5 ) , we see that H is not ?i-arc-strong since | (V(D),V(DX)) \ = 
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\S\ = n — 1 < n. Now we construct the desired tournament T from H by adding a 

new vertex x and adding all tlie arcs in ({;v}, SU S\) U (5 U S[, {#})• It is easily seen 

tha t S(T) = n + 2. 

Note that 1 V ' ( ^ ) + 2 | = [ ( 2 ( 2 n + ^ ) + 1 J + 2 J = n + 2. Then by Lemma 1, T is (J(T)-ai-c-

strong, implying tha t T is (?i -f l)-arc-strong. However, since NT{X) = H, T is not 

locally /i-arc-strong. D 

A c k n o w l e d g e m e n t . 

I would like to thank Professor Gary Char t rand for his kindly sending me a copy 

of his joint paper [4] with Professor Raymond E. Pippert which inspired this work. 
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