Previous |  Up |  Next

Article

Keywords:
weak bi-Lindelöf number; bispread; bi-quasi-uniform weight; bi-Lindelöf number
Summary:
In this paper, bitopological counterparts of the cardinal functions Lindelof number, weak Lindelof number and spread are introduced and studied. Some basic relations between these functions and the functions in [3] are given.
References:
[1] L. M. Brown: On extensions of bitopological spaces. Coiloquia Mathematica Societatis Janos Bolyai, 23, Topology, Budapest, 1978.
[2] L. M. Brown: Dual covering theory, confluence structures and the lattice of bicontinuous functions. PҺD Thesis Univ. of Glasgow, 1980.
[3] M. Diker: The counterparts of some cardinal functions in bitopoiogical spaces I. Mathematica Bohemica 120 (1995), 237-245. MR 1369683
[4] T. E. Gаntner R. C. Steinlаge: Characterization of quasi uniformities. J. London Math. Soc. Ser. 5 11 (1972), 48-52.
[5] I. Juhász: Caгdinal functions in topology. Math. Center Tracts No. 34, Math. Centrum, Amsterdam, 1971. MR 0340021
[6] I. Juhász: Caгdinal functions in topology ten years later. Math. Center Tracts No. 123, Math. Centrum, Amsterdam, 1980. MR 0576927
[7] R. D. Kopperman P. R. Meyer: Cardinal invariants of bitopological spaces. Časopis pro pěstování matematiky 114 (1989), no. 4, 374-380. MR 1027233
Partner of
EuDML logo