Article
Keywords:
quadratic forms over a real plural algebra; plural signature; inertia theorem; free module; bilinear form; polar basis; linear algebra; quadratic form
Summary:
Quadratic forms on a free finite-dimensional module are investigated. It is shown that the inertial law can be suitably generalized provided the vector space is replaced by a free finite-dimensional module over a certain linear algebra over $\R$ ( real plural algebra) introduced in [1].
References:
[1] M. Jukl:
Linear forms on free modules over certain local ring. Acta UP Olomouc, Fac. rer. nat. 110; Matematica 32 (1993), 49-62.
MR 1273169 |
Zbl 0810.13006
[2] M. F. Atiyah, I. G. MacDonald:
Introduction to commutative algebra. Addison-Wesley, Reading, Massachusetts, 1969.
MR 0242802 |
Zbl 0175.03601
[3] B. R. McDonald:
Geometric algebra over local rings. Pure and applied mathematics. New York, 1976.
MR 0476639 |
Zbl 0346.20027