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Summary. In this paper, bitopological counterparts of the cardinal functions Lindelof 
number, weak Lindelof number and spread are introduced and studied. Some basic relations 
between these functions and the functions in [3] are given. 
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AMS classification: 54A25, 54E55 

In the preceding paper of this series, counterparts of the functions weight, density 

and cellularity were defined [3]. Here, bi-Lindelof number is defined, and shown to 

be equal to the joint Lindelof number. Following this we define the weak bi-Lindelof 

number, and consider its relation with bicellularity. Bidiscreteness is introduced, the 

bispread of a bitopological space is defined, and the special properties of the various 

cardinal functions under consideration which hold on p-q metric space are obtained. 

Considering the bi-quasi-uniform weight of Kopperman and Meyer [7], some basic 

relations are obtained in this class of spaces for the bi weight, bicellularity, bi-quasi-

uniform weight and weak bi-Lindelof number. For notation and terminology which 

is not explained here, we refer to [2], [5] and [6], As in [3], bitopological counterparts 

of topological cardinal invariants are denoted by preceding the usual name with b 

(bw = biweight, etc.). The prefix j denotes the corresponding invariant applied to 

the joint topology. 
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1. B I - L I N D E L O F NUMBER, WEAK BI-LINDELOF NUMBER 

AND BISPREAD 

1.1. Def ini t ion. Let (X, u, v) be a bitopological space. X is called a bi-Lindelof 

if every open dual cover has a subcover whose cardinal number is at most a. The 

cardinal number 

bh(X) = min{a: X is a bi-Lindelof} 

is called the bi-Lindelof number of (X, u,v). 

1.2. T h e o r e m . For every bitopological space (X,u,v), we have 

b L ( X ) = j L ( X ) . 

P r o o f . bL(X) ^ ]L(X) is immediate from our observation that with every open 

dual cover d we may associate the jointly open dual cover {U n V: UdV}. Hence, it 

is enough to show that }L(X) ^ bL(X). Let 5 = {Ia: a e A} be a jointly open cover 

of X. For each a 6 A, we can choose pairwise disjoint sets Aa such that \J{U\ n V* : 

A 6 Aa} = Ia and (U\, V\) € u x v. Hence, d = {(U\,VX): A 6 \JAa} is an open 

dual cover of X. Choose a subcover e = {(Ux, VA): A e B} of d with | £ | < bL(X), 

and C = {a: 3A 6 -B(A e A , ) } . It is easy to see that []{Ia: a 6 C} = X and 

|C| ^ bL(X). Hence, we obtain jL(X) ^ bL(X). D 

By an open pair we shall mean an ordered pair of sets (G, H) with Geu and H e v. 

The following definition generalizes the concept of the weak Lindelof number [6]. 

1.3. Def ini t ion. Let (X,u,v) be a bitopological space, d an open dual family, 

that is d C u x v. Then d is called a weak open dual cover of X if given an open pair 

(G, H) with G n f f + 0, there exists ({/, V) e d such that Gf lV ^ 0 and .ffn[/ ^ 0. 

If every open dual cover has a weak subcover whose cardinal number is at most a, 

then X is called weak a bi-Lindelof. The cardinal number 

wbL(X) = min{a: X is weak a bi-Lindelof} 

will be called the weak bi-Lindelof number of X. 

1.4. T h e o r e m . 

(i) wbL(X) ^ jwL(X) O L ( X ) 

(ii) wbL(X) < bc(X). 

P r o o f , (i) Let d = {(Ua,Va): a e A} be an open dual cover of X. Clearly, 

5 = {Ua n Va: a G A} is a jointly open cover of X . We choose a weak subcover 

248 



S' = {Ua n Va : a e A'} of .5 with \A'\ <. jwL(A'). Since \J6> " = X, for each open 

pair (G, H) with G n i? + 0 there exists a e A ' such that G n tf n Ua n Va ^ 0. 

Hence, G n V„ ^ 0 and H n Ua =£ 0. Thus the open dual family {(Ua, Va): a e A'} 

is a weak subcover of d whose cardinality is at most jwL(X). We have shown that 

wbL(X) <_ jwL(X). Since jwL(X) <. jL(X), by Theorem 1.2 we have jwL(X) < 

bL(X) as well. 

(ii) Let e be an open dual cover of X and "if = {(£/„, V a) : a € A} a maximal 

bicellular refinement of e (such a refinement exists by Zorn's Lemma). Let us show 

that ^ is a weak subcover of X. Suppose the contrary is true. Then there exists 

an open pair (G,H) with G n H ^ 0 such that for each a e A, Ua n H = 0 or 

Va n G = 0. Take a: e G n # and choose (R, S) 6 e with 1 G i? n S. Let (7 = G n R 

and V = HnS. Then f / n V # 0 and for each a, J 7 a n V = 0 or VQ n t 7 = 0. Hence, 

•if* = 1f U {(£/, K)} is a bicellular family in X, and clearly, tf* x e. Since (£/, V) ^ ^ , 

this contradicts the maximality of %'. Now for each a 6 A we choose ( f l a , S a ) 6 e 

with'{/„ C Ra,Va C S a . Then the family {( .R a ,S a ) : a € A} is a weak subcover of 

e whose cardinality is at most bc(X). Thus we have wbL(X) <_ bc(X). 0 

1.5. Definition . A bitopological space (X,u,v) is called bidiscrete if for each 

x £ X there exists an open pair (Ux, Vx) with x 6 Ux n Vx satisfying the condition 

VyeX,x?y=>UxnVy = 9 or Uv n Vx = 0 . 

Trivially, every bidiscrete space is jointly discrete. For a discrete topological space, 

it is well known that w(X) = \X\ = d(X). A similar result is, however, not true for 

bidiscrete bitopological spaces. 

1.6. E x a m p l e . Let X = R. Consider the topologies u = {(-00,a]: a e R} 

and v = {\b, 00): b e R} on R. The space (R, u, v) is bidiscrete and qrd(R) = rd(R) = 

bd(R) < bw(R) =w1. 

However, we do have: 

1.7. Theorem . If(X,u,v) is bidiscrete, then 

bd(X) <. |X| ^ hw(X). 

1 .8. Definition . Let (X, u,v) be a bitopological space. The cardinal number 

bs(X) = sup {\D\: D is bidiscrete in (X,u,v)} 

is called the bispread of X. 

This generalizes the spread s(X) of a topological space X, see for example [6], 

The following fact is evident: 
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1.9. Theorem. 

b s ( X ) < j s ( X ) . 

2 . p-q METRIZABLE SPACES 

It is well known that in a (pseudo) metric topological space several cardinal in­

variants coincide. Recall that a bitopological space (X, u, v) is called p-q metrizable 

if there exists a pseudo quasi-metric p such that u is the topology of p and v the 

topology of its conjugate q. 

Also, the extent of a topological space X is defined by 

e(X) = sup {|D|: D is closed and discrete in X } . 

2.1. Theorem. If(X,u,v) is weakly pair wise Ti and p-q metrizable, then 

bw(X) = jw(X) = bL(X) = je(X) = bs(X) = bc(X) = jd(X) . 

P r o o f . Clearly, bw(X) ^ jw(X) Js bL(X) ^ je(X). If A is a bidiscrete 

subspace of X , it is also jointly discrete. Furthermore, X is jointly T 2 and perfectly 

normal. Hence, using a standart topological argument, we easily obtain je(X) ^ \A\, 

that is je(X) ^ bs(X). Now let <«f = {(Ua, Va): a e B) be a bicellular family in X . 

For each a e B, choose xa 6 Ua n Va. It is easy to see that D = {xa: a e B} is 

bidiscrete, and \D\ = \V\ sj bs(X). Hence, bs(X) > bc(X). Now we will show that 

bc(X) ^ jd (X) . Let p be a pseudo quasi metric compatible with (X, u,v) and let q 

be the conjugate of p. For i = 1,2, . . . consider the family 

&i = iBcX-.x, y£B, x + y=> p(x, y) Z - or q(x, y) > - \. 

By using Teichmiiller-Tukey Lemma, for each i = 1,2,. . . we can find a maximal set 

Gi e <3i such that 

x, y eGi, x^y => p(x,y) ^ - or ?(a;,j/) ^ T-

It be can easily checked that for each i = 1,2,. . . , 
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is a bicellular family in X, and |G.| = |1f;| ^ bc(A'). Let G = | J{Gi : . = 1 ,2 , . . . } . 

Clearly, | ^ | ^ bc(X). Now we show that G is jointly dense. Suppose the contrary. 

Let x e X \ Gu ". Then there exists a natural number i0 such that 

(PVq)(a,Gi0)>(pVq)(a,G)>^. 
Jo 

Consider the set H = {a} U G i o . For x,y e H, we have (p V q)(x,y) >• f- and so 

p(x, y) ^ ^ or g(a;,j/) #: £ . But this contradicts the maximality of G i o . Thus, G 

is as desired. Hence, bc(X) ^ jd (X) . (If G i is empty, then u and v are discrete 

topologies, and the result is immediate.) 

}d(X) >- bw(X): Let A be a jointly dense subset of X with \A\ = jd (X) . It is easy 

to see that the family 

d={(Bp(y,r), Bq(y,r)):yeA,reQ] 

is a bibase for X and \A\ >- \d\, that is jd(X) >- bw(X). D 

The following example shows that in general hd(X) cannot be included in the 

above equalities: 

2.2. E x a m p l e . Consider the set X = {(x,y): x >- 0,y >- 0} C R2. Let u 

consist of 0 and all subsets G of X satisfying 

(i) (x, y) e G, 0 < x' <. x => (x',y) e G 

(ii) (x,y) eG, 0<y<.y' => (x,y') eG 

(iii) 3y > 0 with (0,y) e G. 

Clearly, u is a topology on X, and so is v = { G ' 1 : G e u}. The space (X,u ,u) is 

weakly pairwise Ti and p-q metrizable [2]. The set A = {(x,y): x >- 0, y >- 0 and 

i , j £ Q } is bidense in X , with \>d(X) = |A| = u. However, bw(X) = jd (X) = u>i. 

Hence, bd(X) < bw(X). 

If we remove the condition that (X,u,v) is weakly pairwise T i , we obtain the 

following more limited result: 

2.3. Theorem. If (X,u,v) is p-q metrizable, then 

bc(X)=jd(X) = bwW-
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3. PAIRWISE COMPLETELY REGULAR SPACES 

Let {(Xa,ua,va)}aeA be a family of bitopological spaces. Consider the product 

bitopological space (X, u,v), where X = PJ Xa,u = \[ ua, v = Yl va. 
a£A a£A a<EA 

The following theorem generalizes the well known properties of the weight in topo­

logical spaces: 

3 . 1 . T h e o r e m . 

bw(X) = \A\ sup { bw(X a ) :a€A}. 

3.2. Defini t ion. Let (X, u,v) be a pairwise completely regular space. The car­

dinal number 

bq(X) = min {|<J|: 6 is a base for a quasi-uniformity compatible with X} 

is called the biquasi-uniform weight of X. 

3.3 . T h e o r e m . If(X,u,v) is pairwise completely regular, then 

b w ( X ) < b q ( X ) - b c ( X ) . 

P r o o f . If (X,u,v) is p-q metrizable, then by Theorem 2.3 the assertion is 

immediate. Assume X is not p-q metrizable. Consider the family g? of p-q metrics, 

with \@>\ = bq(X) (the gage of X). If \&>\ ̂  bw(X), then the proof is complete. 

Suppose \3a\ < bw(X). Consider the bitopological space Xp determined by p e 3s. 

By Theorem 3.1, we have 

bw (j[{Xp: p e P}\ = \&\ sup { bw(Xp) : p e ^ } . 

It can be checked that bw(X) ^ bw(n.{Xp : p € &>}) (cf.[4]). Hence, bw(X) ^ 

sup{bw(X p ) :p 6 &}. By Theorem 2.3, bw(Xp) = bc(Xp) and so bw(X) <_ 

sup{bc(Xp): p 6 &>}. Clearly, sup{bc(Xp): p £ # } < bc(X). Finally, we obtain 

bw(X) <. bc(X). This completes the proof. D 

Now we give a stronger result than Theorem 3.3. 

3.4. T h e o r e m . If (X,u,v) is pairwise completely regular, then 

bw(X) ^ bq(X) • wbL(X). 
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P r o o f . Let 5 be a covering base [1] of a quasi-uniformity compatible with 

(X, u, v), and \S\ = bq(X). We take an open pair (G, H) with G n H 7̂  0. Let x G 

GCiH. Then there exists an open normal dual cover d G S such that St(d,x) = \J{U: 

3V(U,V) € d,x e V} C G and St(x,d) = U { ^ : 3U(U,V) € d,x eU} C H. Let 

e G S, e -< *d. Choose (R, S) G e and a: G i? n S. Consider a weak subcover Ie of e 

with | / e | ^ wbL(X). There exists (L, T) G 7e such that S n L ^ 0 and # n T / 0. 

Since e -! *d, there exists an open pair (U, V) G d such that St(e, L) = 1 J { ^ : (^> -S1) G 

e , S n L # 0 } C t/ ,St(T,e) = U { S : ( # , S ) G e , i ? n T # 0} C V. Clearly, z G U n V. 

Since a; G St(e,L) C 1 7 C St(d,x) C G and 1 G St(T,e) C V C St(z,d) C ff, the 

family 

d' = { (S t ( e ,L ) ,S t (T , e ) ) : e G S,(L,T) G Ie) 

is a bibase for X. Hence, we obtain 

bw(X) ^ |d'| ^ b q W • wbL(X). 

R e m a r k . Note that Theorem 3.3 can be also obtained as a consequence of 

Theorems 1.4(ii) and 3.4. 

3.5. Theorem. [7] If (X, u,v) is pairwise completely regular, then 

bq(X) ^ bw(X). 

As a consequence of Theorems 3.4 and 3.5 we have the following 

3.6. Corollary. If (X,u,v) is pairwise completely regular and F is an element 

of {be, jc ,bs , js ,bL, wbL, jwL}, then 

bw(X) = bqpO-FpO. 
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