Previous |  Up |  Next

Article

References:
[1] J. M. Barzdin: Prognostication of automata and functions. Inform. Process. 1 (1971), 81-84. MR 0406777
[2] J. M. Barzdin: Two theorems on the limiting synthesis of functions. In: Theory of Algorithms and Programs, Latvian State University, Riga, 210 (1974), pp. 82-88. In Russian. MR 0505358
[3] J. M. Barzdin, R. Freivalds: On the prediction of general recursive functions. Soviet Math. Dokl. 13 (1972), 1224-1228. MR 0347570
[4] J. M. Barzdin, R. Freivalds: Prediction and limiting synthesis of recursively enumerable classes of functions. Latvijas Valsts Univ. Zimatm. Raksti 210 (1974), 101-111. MR 0505361
[5] L. Blum, M. Blum: Toward a mathematical theory of inductive inference. Inform. and Control 28 (1975), 125-155. MR 0395312 | Zbl 0375.02028
[6] M. Blum: A machine independent theory of the complexity of recursive functions. J. Assoc. Comput. Mach. 14 (1967), 322-336. MR 0235912 | Zbl 0155.01503
[7] J. Case: Periodicity in generations of automata. Math. Systems Theory 8 (1974), 15-32. MR 0389551 | Zbl 0295.02019
[8] J. Case K. J. Chen, S. Jain: Strong separation of learning classes. J. Exper. and Theoret. Artif. Intell. 4 (1992), 281-293. MR 1234664
[9] J. Case K. J. Chen, S. Jain: Strong separation of learning classes. In: Proc. Third International Workshop on Analogical and Inductive Inference, Dagstuhl Castle, Germany, Oct. 1992. MR 1234664
[10] J. Case, S. Ngo Manguelle: Refinements of inductive inference by Popperian machines. Technical Report 152, SUNY/Buffalo 1979.
[11] J. Case, C. Smith: Comparison of identification criteria for machine inductive inference. Theoret. Comput. Sci. 25 (1983), 193-220. MR 0693078 | Zbl 0524.03025
[12] R. Daley: On the error correcting power of pluralism in BC-type inductive inference. Theoret. Comput. Sci. 24 (1983), 95-104. MR 0707650 | Zbl 0582.68020
[13] R. P. Daley: Inductive inference hierarchies: Probabilistic vs pluralistic. Lecture Notes in Computer Science 215 (1986), 73-82. Zbl 0648.68089
[14] M. Fulk: A Study of Inductive Inference machines. PhD thesis, SUNY at Buffalo 1985.
[15] M. Fulk: Saving the phenomenon: Requirements that inductive machines not contradict known data. Inform. and Comput. 79 (1988), 193-209. MR 0971130
[16] E. M. Gold: Language identification in the limit. Inform. and Control 10 (1067), 447-474. Zbl 0259.68032
[17] M. Machtey, P. Young: An Introduction to the General Theory of Algorithms. North Holland, New York 1978. MR 0483344 | Zbl 0376.68027
[18] Y. Marcoux: Composition is almost as good as s-1-1. In: Proc. Structure in Complexity Theory--Fourth Annual Conference. IEEE Computer Society Press, 1989.
[19] E. Minicozzi: Some natural properties of strong identification in inductive inference. Theoret. Comput. Sci. (1976), 345-360. MR 0505370 | Zbl 0373.68051
[20] D. Osherson M. Stob, S. Weinstein: Systems that Learn, An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge, Mass. 1986.
[21] L. Pitt, C. Smith: Probability and plurality for aggregations of learning machines. Inform. and Comput. 77 (1988), 77-92. MR 0937376 | Zbl 0646.68096
[22] K. Podnieks: Comparing various concepts of function prediction. Part I. Theory of Algorithms and Programs 210 (1974), 68-81.
[23] K. Popper: The Logic of Scientific Discovery. Harper Torch Books, New York 1968.
[24] G. Riccardi: The Independence of Control Structures in Abstract Programming Systems. PhD thesis, SUNY at Buffalo 1980. MR 0624874
[25] G. Riccardi: The independence of control structures in abstract programming systems. J. Comput. System Sci. 22 (1981), 107-143. MR 0624874 | Zbl 0467.68009
[26] H. Rogers: Gödel numberings of partial recursive functions. J. Symbolic Logic 23 (1958), 331-341. MR 0103821
[27] H. Rogers: Theory of Recursive Functions and Effective Computability. McGraw Hill, New York 1967. Reprinted, MIT Press 1987. MR 0886890 | Zbl 0183.01401
[28] J. Royer: A Connotational Theory of Program Structure. (Lecture Notes in Computer Science 273.) Springer-Verlag, Berlin 1987. MR 0909897 | Zbl 0625.68018
[29] C. Smith: The power of pluralism for automatic program synthesis. J. Assoc. Math. Comput. Mach. 29 (1982), 1144-1165. MR 0674261 | Zbl 0496.68065
[30] T. Zeugmann: A-posteriori characterizations in inductive inference of recursive functions. Electron. Informationsverarb. u. Kybernetik 19 (1983), 559-594. MR 0746510 | Zbl 0542.03020
Partner of
EuDML logo