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K Y B E R N E T I K A — V O L U M E 30 ( 1 9 9 4 ) , N U M B E R 1, P A G E S 2 3 - 5 2 

REFINEMENTS OF INDUCTIVE INFERENCE 
BY POPPERIAN AND RELIABLE MACHINES1 

JOHN CASE, SANJAY JAIN AND SUZANNE NGO MANGUELLE 

Restricted and unrestricted algorithmic devices which attempt to arrive in the limit at 
explanatory computer programs for input functions are studied. The input functions may 
be interpreted as summaries of the behavior of real world phenomena. A classification of 
criteria of success for such devices is made based on Karl Popper's refutability principle 
in philosophy of science. Also considered are criteria of success requiring reliability in the 
sense that the devices should not mislead us by converging to faulty programs. The criteria 
in the classifications are compared to one another and some interesting tradeoff results are 
obtained. The techniques of recursive function theory are employed. 

1. INTRODUCTION 

Consider a real world phenomenon / that is being investigated by an agent M. 
M performs discrete experiments x on / . For example, x might be a particle diffrac­
tion experiment and f(x) the resultant probable distribution on the other side of the 
diffraction grating. By a suitable encoding of the experiments and results we may 
treat / as a function from iV = {0,1 ,2 , . . .} , the set of natural numbers, to N. A 
complete explanation for / is a computer program for / . Such a program for / gives 
us predictive power about the results of all possible experiments related to / . We are 
concerned about the theoretical properties of the agents which attempt to arrive at 
explanations (possibly only nearly correct) for different phenomena. In what follows 
we will conceptualize such agents as learners (of programs for functions). 

An inductive inference machine (IIM) is an algorithmic device which takes as its 
input a graph of a function: N —* At, an ordered pair at a time, and, as it is receiving 
its input, outputs computer programs from time to time. 

There are several ways in which one may define what it means for a learner to 
succeed in explaining a phenomenon. One such criterion is due to Gold [16]. We 
say that M Ex-identifies / iff M, fed the graph of / , outputs a non-empty sequence 
of programs which converges to a program for / . Note that one may not be able to 
algorithmically determine, if and when, the sequence of programs output by M on 
/ converges. The class Ex denotes the class of sets of functions, C, such that some 

'Research supported in part by NSF Grant # MCS-77-04388. 



24 J. CASE, S. JAIN AND S.NGO MANGUELLE 

machine Ex-identifies each function in C. Another such criterion, due to [2, 11] is as 
follows. We say that M Bc-identifies a function / iff M fed the graph of / , either 
outputs a finite sequence of programs, the last of which computes / , or outputs an 
infinite sequence of programs, all but finitely many of which compute / . The class 
Be denotes the class of sets of functions, C, such that some machine Bc-identifies 
each function in C. Ex and Be are examples of what we refer to below as learning 
classes. 

The above criteria have been extended by allowing anomalies in the final pro­
gram^) [5, 11, 20]. 

Karl Popper has enunciated the principle that scientific explanations ought to be 
subject to refutation [23]. Most of this paper concerns restrictions on the machines 
requiring them to output explanations which can be refuted. Precise mathematical 
definitions capturing this idea may be found in Section 3.3 below. Our results may be 
found in Section 4 below. Corollary 2, also in Section 4, shows interesting tradeoffs 
in learning power obtained as one varies the number of anomalies allowed and the 
number of mind changes to convergence. For several criteria of success defined with 
restrictions suggested by Popper's refutability principle, Corollary 2 provides an 
approximate product tradeoff formula by which anomalies can be traded for mind 
changes without loss of learning power. 

Section 5. introduces prediction machines from [1, 3, 5, 22], which machines ex­
trapolate next values for functions. Section 6. shows how the power of prediction 
compares to that of the other success criteria with Popperian restrictions. 

Roughly, a machine M is said to be reliable on a class, C, of functions: N —* N, 
iff whenever, on / 6 C, the sequence of programs output by M converges to a final 
program, that final program "does a good job" of computing / . Intuitively, reliable 
machines don't mislead by converging to bad programs. [5, 19] introduce the concept 
of reliability, but in the latter reference reliable is called strong. Section 7 provides 
the precise definitions. Section 8 deals with comparing learning classes obtained by 
requiring machines to be reliable with the other learning classes of this paper. 

Some sharp contrasts in learning power appear when the class of functions on 
which machines must obey some restriction is varied. For example, taken together 
Theorem 21, Corollary 4 and Theorems 17 and 22 from Section 4 point to a tremen­
dous loss of learning power if machines are required to obey a weak Popperian 
restriction on the class of all total functions instead of on the class of all computable 
functions. Corollary 9 from Section 8 points to a similar result for machines required 
to be reliable. 

This paper grew out of the much earlier [10]. Carl Smith and Jun Tarui nicely 
pointed out some mistakes in [10]. 

. 2. PRELIMINARIES 

Recursion-theoretic concepts not explained below are treated in [27]. N denotes the 
set of natural numbers, {0,1, 2 , 3 , . . . } . 

* denotes a non-member of N and is assumed to satisfy (Vn)[n < * < oo]. a 
and 6, with or without decorations (decorations are subscripts, superscripts and the 
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like), range over At U {*}. e, i, j , k, I, m, n, q, r, s, t, u, w, x, y, z, with or without 
decorations, range over At. [f J denotes the largest natural number n, such that 
n < -. x — y denotes max({0,:n — y}). In some contexts, p, with or without 
decorations, ranges over At, being construed as program for a (partial) function. In 
other contexts, p, ranges over total functions, with the range of p being construed 
as programs for (partial) functions. 

We let P, 5', with or without decorations, range over subsets of At. complement(S') 
denotes the complement of ,S', i.e. complement(S) = N — S. 6, C, c , D, D respec­
tively denote member of, subset, proper subset, superset and proper superset. 
| denotes undefined. [ denotes defined. (•,•) denotes a 1-1 mapping from pairs 
of natural numbers onto natural numbers. 7Ti, 7r2 are the corresponding projection 
functions. (•, •) is extended to ?i-tuples in a natural way. card(P) denotes the car­
dinality of P . So then, 'card(P) < *' means that card(P) is finite. min(P) and 
max(P) respectively denote the minimum and maximum element in P . We take 
min(0) to be oo and max(0) to be 0. 

j), with or without decorations, ranges over partial functions. We identify partial 
functions with their graphs. For a e (AtU{*}), r/i = a ?/2 means that card({z | 
?/i(a;) ^ t]2(x)}) < a. domain(?/) and range(?/) respectively denote the domain and 
range of partial function ?/. For an expression E in x, \x • E(x) denotes the function 
/ such that, for all x, f(x) = E(x). 

TZ denotes the class of all recursive functions, i.e., total computable functions with 
arguments and values from At. T denotes the class of all total functions. f,g,h, 
with or without decorations, range over T. C and S, with or without decorations, 
range over subsets of T. 

0-extension of a partial function ?/ is a total function / such that, for all x, 

tt \ _ / 7l(x)i if £ € domain(?7); 
|_ 0, otherwise. 

<p denotes a fixed acceptable programming system for the partial computable func­
tions: At —* At [26, 27, 17]. (Case showed the acceptable systems are characterized as 
those in which every control structure can be constructed; Royer and later Marcoux 
examined complexity analogs of this characterization [24, 25, 28, 18].) <pt denotes the 
partial computable function computed by program i in the ^-system. We let $ be 
an arbitrary Blum complexity measure [6] associated with acceptable programming 
system <p; such measures exist for any acceptable programming system [6]. We let 
Wi = domain(y>,). Let WiiS = {x < s \ <&i(x) < s}. 

• A set S is said to be simple iff (a) S is recursively enumerable, (b) complement(,S) 
is infinite and (c) complement^) does not have any infinite recursively enumerable 
subset. A class of functions C is said to be an r. e. class iff either C is empty or there 
exists a recursive g such that {<pg(i) \ i £ At} — C. 

CO oo 

The quantifiers 'V', ' 3 ' and '3! ' mean 'for all but finitely many', 'there exist 
infinitely many,' and 'there exists a unique' respectively. The quantifier V7 denotes 
'for all but at most j ' . 
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3. LEARNING PARADIGMS 

For any partial function ?/ and any natural number n such that, for each x < n, 
n(z)i, we let i][n] denote the finite initial segment {(x,i](x)) | x < n). Let INIT = 
if[n] I / S 1 A n € A/}. We let a, r and 7, with or without decorations, range 
over INIT. 

Definition 1 . [16] A learning machine is an algorithmic, device which computes a 
mapping from INIT into At U {?} such that, if M(/[n]) ^ ? , then M(/[n + 1]) #? . 

We let M, with or without decorations, range over learning machines. In Defi­
nition 1 above, '? ' denotes the situation when M outputs "no conjecture" on some 
<r e INIT. 

In Definition 2 below we spell out what it means for a learning machine on a 
function to converge in the limit. 

Definition 2. Suppose M is a learning machine and / is a computable function. 

M( / ) J (read: M ( / ) converges) just in case (3«)(V n) [M(f[n]) = i]. If M( / ) J , then 

M ( / ) is defined = the unique i such that (V n)[M(/[n]) = j], otherwise we say that 

M ( / ) diverges (written: M( / ) f ) . 

3 .1 . Explanatory Function Identification 

We now introduce a criteria for a learning machine to successfully infer a function. 

Definition 3 . [16, 5, 11] Let a € At U {*}. 

(a) M Exaidentifies f (written: / 6 Ex a (M)) just in case (3i \ ip, = a / ) [ M ( / ) | =»']. 

(b) Ex a = {$ I (3M)[s C Ex a (M)]}. 

We sometimes write Ex for Ex 0 including in the names of those learning classes 
introduced in later sections where 'Ex 0 ' is a proper substring of those names. 

The notion of Ex* identification is due to Blum and Blum [5]. For a given / and 
M, we refer to each instance of the case, ? ^ M(/[n]) ^ M(/ [n + 1]) as a mind 
change by M on / . Case and Smith [11] (see also [4]) introduce a refinement of 
the above notion of Ex-identification by bounding the number of times a learning 
machine is allowed to change its mind before converging to a correct program for 
the function being learned. Definition 4 below describes this notion. 

Definition 4 . [11] Suppose a, b £ N U {*}. 

(a) M Exa-identifies f (written: / 6 Ex£(M)) just in case [(3i | (pt = a / ) 

(V n)[M(/[n]) = i] A card({» |? ? M(/[n])-- M( / [n + 1])}) < 6]. 

(b) Exa = {C I (3M)[C C Ex a (M)]} . 
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Clearly, Ex-identification is the same as Ex,-identification. We sometimes write 
Ex" for Ex , including in the names of those learning classes introduced in later 
sections where 'Ex a ' is a proper substring of those names. 

We now define a (partial) function mindchange. 

Definition 5. mindchange(M, f[n]) = card({m < n |? ^ M ( / [ m ] ) # M(/[m+1])}) . 
mindchange(M, / ) = card({n |? •£ M(f[n]) ± M(/[n + 1])}). 

3 .2 . Behaviorally Correct Identification 

Case and Smith [11] introduced another infinite hierarchy of identification criteria 
which we describe below. "Be" stands for behaviorally correct. Barzdin [2] essen­
tially introduced the notion Be0 . 

Definition 6. [11] Let a G N U {*}. 

(a) M Be"-identifies f (written: / £ Bc°(M)) just in case (V n)[fM(j[n))
 =" ft-

(b) Bca = {S | (3M)[5 C Bc a(M)]}. 

We sometimes write Be for Be 0 including in the names of those learning classes 
introduced in later sections where 'Be 0 ' is a proper substring of those names. 

Theorem 1 just below states some of the basic hierarchy results about the Ex a 

and Be" classes. 

Theorem 1. For all m, n 

(a) E x m + 1 - E x m ф 0, (e) Ex* C Bc 

(b) Ex° + 1 - Ex*. ф 0, (f) B c m c B c m + 1 

(c) Ex*, - Ц„eyv E x m ф 0, (g) U m Є j V B c m CBc* 

(d) Ex° - ц e J V E X ; ф 0, (h) 7гeвc*. 

Parts (a), (b), (c), (d), (f) and (g) are due to Case and Smith [11]. John Steel first 
observed that Ex* C Be and the diagonalization in part (e) is due to Harrington 
and Case [11]. Part (h) is due to Harrington [11]. Blum and Blum [5] first showed 
that Ex C Ex*. Barzdin [2] first showed that Ex C Be. 

3.3. Popperian Function Identification 

The following definitions are based on Popper's refutability principle: incorrect pro­
grams computing total functions are always refutable. 

Definition 7. M is Popperian on f iff, for all n such that M(/[?i])9^?, ¥>M(/[n]) £^-
M is Popperian on C just in case it is Popperian on each / e C. We say that M is 
Popperian just in case it is Popperian on T. 
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Definition 8. 

(a) We say that M PcExa-identifies f (written / G PcEx a (M)) just in case M 
is Popperian on C and M Exa-identifies / . 

(b) P c E x a = {S | (3M)[s C P c E x a ( M ) ] } . 

Definition 9. 

(a) We say that M PcBc"-identifies f (written / G P c B c a ( M ) ) just in case M 
is Popperian on C and M Bca-identifies / . 

(b) P c B c a = {S | (3M)[S C P c B c a ( M ) ] } . 

For I G {Exa , Bc a } , we sometimes write P I for P^-I Besides its relation to Popper's 
refutability principle, P E x is a mathematically natural class with many character­
izations and closure properties. The reader will see some of these characterizations 
in Section 4. 

P E x above adheres closest to Popper's refutability principle. We consider some 
less restricted variations below. 

Definition 10. M is *-Popperian on f iff, for all but finitely many n such that 
M(/[n]) ^ ? , <PM(f\n\) G ̂ ' M is *- Popperian on C just in case it is *-Popperian on 
each / G C. We say that M is *-Popperian just in case it is *-Popperian on T. 

Definition 11. 

(a) We say that M P*.Exa-identifies f (written / G P c E x a ( M ) ) just in case M 
is *-Popperian on C and M Exa-identifies / . 

(b) P c E x a = {S | (3M)[S C P c E x a ( M ) ] } . 

Definition 12. 

(a) We say that M P*cBca-identifies f (written / G P c B c a ( M ) ) just in case M 
is *-Popperian on C and M Bca-identifies / . 

(b) P*Bc a = {S | (3M)[s C P*Bc a (M)}] . 

In this paper we will be interested in the above definitions for C G {11, T}. 
In the following definitions we relax the Popper refutability restriction in another 

direction. In these definitions we require a machine to output programs for -total 
functions only on the graphs of functions which it identifies. 

Definition 13. 

(a) We say that M TExa-identifies f (written: / G TEx a (M) ) just in case M 
Exa-identifies / and (Vn)[M(/[n]) =? V ^M(/[n]) € K]-

(b) T E x a = {C | (3M)[e C TEx a (M)]} . 
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Definition 14. 
(a) We say that M TBca-identifies / (written: / G TBc a (M)) just in case M 

Bca-identifies / and (Vn)[M(/[n]) =? V <PM(j[n]) G n^ 
(b) TBc a = {6* | (3M)[C C TBc a (M)]} . 

The following proposition is immediate from the definitions. 

Propos i t ion 1. 

(a) P E x a C TEx a C Ex a . (d) P*-Ex C P*-Bc. 

(b) P E x a CP*rEx a C P * , E x a C E x a . (e) T E x a C T B c a . 

(c) P ^ E x C P p c . 

Which of the subset relations iu Proposition 1 are proper is completely spelled 
out in Section 4. 

4. RELATING DIFFERENT POPPERIAN CLASSES 

Following Theorem gives a characterization of PEx . 

Theo rem 2. [3, 11] C G P E x iff there exists an r. e. class C C R, such that C C C. 

P r o o f . Suppose C G P E x . Let M be a Popperian machine which Ex-identifies 
each function in C. Let C = {<PM(a) I M(<r) 7^?}. It is easy to see that 7v D C 2 C 
and C is an r.e. class. 

Suppose C ^ 0 is an r. e. class. We construct a Popperian machine M such that 
C C Ex(M). Suppose g G 11 is such that {<pg(i) \ i G N} = C. Define M as follows. 

M ( / H ) = min({n) U {i < n | (Vx < n)[/(x) = ^(,-)(^)]}) 

It is easy to see that M is Popperian and that C C Ex(M). • 

Using the above characterization of P E x we obtain the following closure property 
of P E x . 

T h e o r e m 3. PTJBC* = P E x . 

P r o o f . Clearly any machine which is Popperian on all the recursive functions is 
Popperian. Thus it suffices to show that PBc* C P E x . Suppose M is Popperian 
and M Bc*-identifies C. Let C = { p M ( ( j ) | M(<r) ^ ? } . Clearly, C C C ' C R a n d C 
is an r.e. class. Thus, by Theorem 2, C G P E x . O 

The following characterization of P E x was first proved for N V (see Definition 19 
in Section 5; it is proved in Section 6. that N V = PEx) by Barzdin and Freivalds 
[3] and independently by Adelman [5]. 
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T h e o r e m 4. P E x = {C | (3ft 6 7l)(V/ € C)(3i)[W = / A (V *)[*.(x) < /.(*)]]}. 

Let K = {a; | <px(x)l}. A class of functions C is said to be r. e. in A' class iff 
either C is empty or there exists a function g, which can be computed relative to an 
oracle for K, such that C = {<pg(i) \i & N}. 

Theorem 5. [11] P E x = {C \ C is contained in some r.e. in K class of recursive 
functions }. 

The following theorem gives a closure property of TEx . The proof was obtained 
in collaboration with K.J. Chen. 

T h e o r e m 6. TBc* = TEx . 

P r o o f . It suffices to show that TBc* C TEx . Suppose M is given. We construct 
an M ' such that TBc*(M) C TEx(M' ) . Let M ' be defined as follows. Let p0 be a 
program for Xx.Q. 

?, i fM( / [n ] )=? ; 
M ( / H ) , if (3j < n | M(/[ i]) T-?) 

[card({x<n|^M(/m)(a:)<n A PMc/M)1^)?-/(*)}) = 0], 
and m = min({i | M(/[/]) ^ ? A 

c-Ard({x<n\$Mub])(x)<n A VM(/[i])(x) ^f(x)}) = °})' 
Po, otherwise. 

м'(/M) = 

It is easy to verify that M' TEx-identifies any function TBc*-identified by M. • 

The following theorem gives the closure properties for P*«Ex, for C £ {71,T}. 

T h e o r e m 7. 

(a) P^Ex* = P ^ E x . (b) P f E x * = P r E x . 

P r o o f . Suppose M is given. Let converr(/[n]) = {x < n | ^M(f[n]) < n A 

PMlfM) ^ f(x))- L e t Pa tch be a recursive function such that, for all i, x and finite 
set of pairs, D, 

(„\-hm> if(3y)[(x,y)en]andym=mm({y\(x,y)eD}); 
*Wd,(..D)(*) - | w ( j c ) > o t h e r w i s e . 

Define M' as follows. 
If M(/[n]) =?, then M'(/[n]) =?; otherwise M'(/[n]) = patch(M(/[n]), {(x,y) | 

/(a;) = y A x £ converr(/[n])}). It is easy to see that if M is *-Popperian on C, 
then so is M' . Also, if for an / , £>M ( / )

 = * •!" all<^ ^M(/) e ^ ' t n e n VM'(/) = /• D 

We now proceed to determine the exact relationship between the different learning 
classes, defined in this paper, based on Popper's refutability principle. 
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T h e o r e m 8. For all n, P E x n + 1 - Ex* ^ 0. 

P r o o f . Let Cn = {/ | card({ar | f(x) ^ f(x + 1)}) < n + 1}. It is easy to see 
that Cn G P E x n + 1 . It was shown in [11] that Cn <£ Ex*. D 

The following theorem witnesses an interesting tradeoff. For Popperian classes, 
it is possible to completely tradeoff anomalies for mind change bounds. Surprising 
similar tradeoff results have also been found for team learning [29, 21] (see the 
discussion after Corollary 2 below), with teamsize in the role of mind changes. 

Theo rem 9. Suppose m, n, m' are given. Let n' = (1 + n) • (1 + Lm/+1J) — 1. 

Then, for I G {PEx, TEx, P*rEx, P^Ex} , I m C Im,'. 

P r o o f . Suppose M Im-identifies C. We give an M' which Im'-identifies C. If 

M(/[n]) =?, then let converr(/[n]) = 0; otherwise let converr(/[n]) = {x < n \ 

^M(jM) < n ^ (PM(j[n]) 7̂  f(x)}- Le t patch be a recursive function such that for 
a11 *> f> n> , . f f(x), if x G converr(/H); 

<Pv^iJlnJ>(*)={%£t otherwise. 
Let M ' be defined as follows. 

?, i fM( / [n ] )=? ; 
M ( / H ) , if n = 0 or M(/[n]) ± M(f[n - 1]); 
patch(M(/[n]), f[n}), if n > 0 and M(/[n]) = M(/[n - 1]) --? and 

(3i I 0 < i < [^+TJ)[card(converr(/[n - 1])) 
< i • (m1 + 1) < card(converr(/[n]))]; 

l M ' ( / [ n - l ] ) , otherwise. 

м'(/H) = 

It is easy to see that, 

(a) if <PM(j[n]) i s t o t a l > t h e n s o i s fM'(][n\v 
(b) if the number of mind changes by M on / is bounded by n, then the 
number of mind changes by M' on / is bounded by (7i+l)-(l + [m7^.1 J)—L 
and 

(c) if <PM(j) G Tl and ^M(/) = m f> t h e n ^M(/) ~m f-

This completes the proof of the theorem. • 

Definition 15. / is a S T E P m function iff there exist i, n 0 , n\,.. . ,n. , So, S\,...,Si 
such that the following conditions are satisfied. 

(a) 0 = n 0 < iii < " 2 < • • • < «»• 

(b) iij < min(.S'j), max(,S'j) < »j + 1, for j < i (where n ; + 1 is taken to be oo). 

(c) card(Sj) < m, for j < i. 

(d) (Vxe\jj<isj)[f(x) = o}. 
(e) (Vj < i)(V* | n j < x < n i + 1 A x $ Sj)[f(x) = j + 1]. 

Definition 16. STEP m (n) = {/| / i s a S T E P m function and max(range(/)) 5 „} . 
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Definition 17. For n > 0, let STEPINITm(n) = {f[x] \x£NAfe STEPm(n) A 
f(x) = n). Let STEPINITm(0) = {0}. 

T h e o r e m 10. Suppose ra, n, ra' are given. Then for n' = (l + n)-(l + [^r}—'})~-2> 

P E x m - Exm,' -- 0. 

P r o o f . Clearly, STEPm(n + 1) G P E x m . Suppose that M Exm'-identifies 
S T E P m ( n + l ) . 

Claim 1. For all / > 0, for all a t= STEPINlTm(/), there exists a r £ 
STEPINIT m ( /+ 1) such that <x C r and mindchange(M, r) > (1 + [j^+rJ) + 
mindchange(M, a). 
There exists a r 6 STEPlNITm( l) such that mindchange(M, r) > (1 + [~r\j\)~ U 

The above claim follows immediately from the following easy to prove claim. 

Claim 2. Suppose / > 0, a G STEPINlTm(/) such that, there exists an i < LmT+rJ , 
card({x | (ar,0) G r A x > min({y \ (y,l) G <r})}) = i • (ra' + 1). Then there 
exists a r G STEPINITm(/) such that, a C r, J J M ( T ) =* /, M(cr) ^ M(r ) and 
card({z | (x, 0) G r A z > min({y | (y, /) G <r})}) - (i + 1) • (ra' + 1). 

Now the existence of an / G STEPm(n + 1) such that mindchange(M,/) > 

(1 + n)(\ + L S P + T J ) . - 1 follows from Claim 1. Thus STEPm(n + 1) £ Exm,'. • 

We have the following corollary to the proof of Theorem 10. 

Corollary 1. PExJ - U m U„ E x™ ?- •• 

As a corollary to Theorems 9 and 10 we have 

Corol lary 2. Suppose [I = P E x and J G {PEx, TEx, P^-Ex, P ^ E x , Ex}] or 
[1= P f E x and J G {P^-Ex, P ^ E x , Ex}] or [I G { T E x , P ^ E x } and J G {I, Ex}]. 
Then 1° C Jg, iff the following two conditions are satisfied. 

(a) 6 < 6'. 
(b) a' = * V b' = * V [a G At A £±f > f ^ l ] . 

The inequality with fractions in part (b) of Corollary 2 is just an approximate 
product tradeoff between anomalies and mind changes. Anomalies can be traded for 
mind changes, but part (a) blocks tradeoffs in the other direction. We surprisingly 
see the exact same tradeoff formula in team learning [29, 21], an apparently quite 
different context. Somewhat similar tradeoff formulas for Bc-identification were 
observed in [12, 13]. 

P ropos i t ion 2. TExg = Exjj. 

P r o o f . Follows from the Definitions of the classes. • 
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Theorem 11 . T E x 0 - L L P ^ B c m # 0. 

P r o o f . Let C = {/ | <fif(o) = / } • Clearly, C £ TEx0 . Suppose M and m are 
given. We show below that either M is not *-Popperian on It or there exists an 
/ £ C which is not Bcm-identified by M. Without loss of generality we assume 
that, for all <r, M(<r) ^ ? . By the implicit use of the Kleene recursion theorem ([27, 
Page 214]), there exists an e such that the (partial) function <pe may be described 
as follows. 

Let xs denote the least x such that <pe(x) has not been defined before stage s. 
Let <pe(0) = e. Go to stage 0. 

Begin stage s 

1. Search for a a £ INIT, such that ^ [ z j ] C a and, for all x < m, <PM.(a)(\a\~^x)^-

2. If and when such a <r is found, 
for x such that xs < x < \a\, let <pe(x) = y, where (x, y) £ a and 
for x such that \<r\ < x < \<r\ + m, let <pe(x) = <PM(<r)(x) + *• 

3. Go to stage s + 1. 

End stage s. 

Now we consider the following cases. 
Case 1: All stages terminate. 

In this case clearly, <pe £ C. However, by the diagonalization at step 
2, for infinitely many /, PM^M) ^ m f«- Thus M does not Bcm-identify 
<pe ec. 

Case 2: Some stage s does not terminate. 

In this case M does not output a program for a total function, on 
any extension of <pe[xs]. Thus M is not *-Popperian on H. 

From the above cases we have that C £ P^Bc" 1 . • 

Corollary 3 . T E x 0 - P ^ E x * ^ 0. 

T h e o r e m 12. P^-Exg - PEx ^ 0. 

P r o o f . Let C = {/ | <pf(o) = / A (V.-)[$/(0)(.-) < f(x + 1)]}. The concept 
behind this C is from [5]. It is easy to see that C £ P^-EXQ. Suppose by way of 
contradiction M, a Popperian machine, is given, such that C C Ex(M). Without 
loss of generality we assume that M is such that, for all a, M(<r) 7^?. By the implicit 
use of Kleene's recursion theorem there exists an e such that the (partial) function 
<pe may be described as follows. 

Je, ifx = 0; 
VeW - I $e(x _ I) + cpM{^[x])(x) + 1, otherwise. 

Clearly, if M is Popperian, then <pe £ C. Moreover, it is easy to see that <pe g 
PEx(M). • 
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T h e o r e m 13. Ex™ C P fBc* . 

P r o o f . Suppose M Exm-identifies C. Let p0 be a program such that, for all x, 
<pPo(x) = 0. Let prog be a recursive function such that, for all i, f, I and x 

( / (*) , i f x < / ; 
<Ppr°&(i,f[i])(x) - \ °> if card({y < / | *.(y) > x}) > m; 

I <Pi(x), otherwise. 

Let M ' be defined as follows. 

( ? , i fM( / [ / ] )=? ; 
M'(/[i]) = < Po, if mindchange(M, /[/]) > n; 

[ prog(M(/[/]), /[/]), otherwise. 

Clearly, E x m ( M ) C Bc*(M'). Now we show that M ' is *-Popperian on T. Suppose 
/ is a total function. It is easy to see that M ' is *-Popperian on / by considering 
each of the following three cases. 

(1) mindchange(M,/) > n, 
(2) mindchange(M,/) < n and card({a; | ^M( / ) ( a ; )0 ) > m> 
(3) mindchange(M,/) < n and card({a; | <PM.(f)(x)^)) <. m-

Thus Ex™ C P*rBc*. D 

T h e o r e m 14. T E x C P*-Bc*. 

P r o o f . This proof is very similar to the proof of Theorem 13. Suppose M 
TEx-identifies C. Without loss of generality assume that M is such that, for all a, 
M(a) ^ ? . Define M ' as follows. Let prog be a recursive function such that, for all 
/ , / and x 

(f(x), i f z < / ; 

<ppneim(x) =\o, if (3!' < 0 H ( { y < i I *M(/[.'])(w) > *)) > oi; 
I PM(f[i])(x)> otherwise. 

Let M ' be defined as follows. M'(/[/]) = prog(/[/]). Clearly, TEx(M) C Bc*(M'). 
Now we show that M ' is *-Popperian on T. Suppose / is a total function. Now it 
is easy to see that M ' is *-Popperian on / by considering the following two cases. 

(i)(v/)bM(/to)e^-

( 2 ) - ( V / ) ^ M ( / [ ( ] ) G 7 J ] . 

Thus T E x CP*rBc*. D 

Combining the ideas of the proofs of Theorems 13 and 14 it can be shown that 

T h e o r e m 15. P ^ E x * C P f B c * . 
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Theorem 16. Ex*, - P*rBc* -£ 0. 

Proof . Let C — { / | y/(o) —* / } • Clearly, C £ Ex*,. Suppose by way of 
contradiction that M is *-Popperian on T and C C Bc*(M). Without loss of 
generality we assume that M is such that, for all <r, M(cr) ^ ? . Then by the implicit 
use of Kleene's recursion theorem, there exists an e, such that the partial function 
(fie may be described as follows. 

We assume without loss of generality that <I> is such that, for all i, x, $>i(x) > x. 
Let <Pe(0) = c. Let <p\ denote the part of <pe defined before stage s. For each s, let 
x° = 0 and, for i > 0, x's = i-th member of complement(domain(y>')) in increasing 
order. Let gs denote the 0-extension of <p%. Go to stage 0. 

Begin stage s 

1. for i = (0,0) to oo do 
Let j , k be such that i = (j, k). 

if (Vu> \x{<w< *£+ 1)[*M(j.M)( i Bi+ 1) - fc] t h e n 

Go to step 2. 
endif 

endfor 
2. Let <pe(xi+l) = 1 + m a X ( { P M ( j i W ) W + 1 ) | x{ < w < x{+'}). 

Go to stage s + 1. 
End stage s 

Since M is *-Popperian on T, all stages must terminate. 
Let x* = lim.^oo x\. Now consider the following cases. 

Case 1: For all but finitely many i, x']. 

In this case clearly <pe converges on all but finitely many inputs. Let g = 
the 0-extension of <pe. Clearly, g £ C. Let ,/ be the largest i such that 
x'l. Let s be such that x'J = x". Now for all s' > s, (Vtu | x'< < w < 
x'.'<+1)[l£,e(z!.'+1H # 'PM(g[w])(x\'-+1)ili ( b v t h e diagonalization at step 2 
in some stage s" > s'; this diagonalization must happen since x , | + 1 {) . 

Case 2: For each i, ar'J. 

In this case it is easy to see that M cannot be *-Popperian on T. 

From the above cases it follows that C £ P*-Bc*. D 

Theorem 17. P^Ex - P^-Bc* -£ 0. 

P r o o f . Suppose q is such that Wq is a simple set [27]. Let 

C = {/ € It | The following two conditions are satisfied. 

1. {x | /(3a:) = 0} C complement(W9); 
(* Note that this implies {x | /(3a:) = 0} is finite. * ) 

2. For y = max({x | /(3a:) = 0}) and e = /(3j/ + 1), 
<Pe = f and (Vz > 2/)[max({*„(a;) | x < Zz + 1}) < f(3z + 2)]. 

} 
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It is easy to see that C G P^Ex. Suppose M is given. Then we construct an / 
such that one of the following two properties is satisfied. 

(a) {x | /(3a;) = 0} is infinite and (\/x)(3x' > x)[<pM{}[xl]) £ 71}. 

( b ) / e C a n d / £ B c * ( M ) . 

It will immediately follow that C 0 P*-Bc*. 
Without loss of generality we assume that M is such that, for all a, M(<r) ^ ? . 
Now we proceed to construct an / as claimed above. We construct / in stages. 

xs denotes the least x, if any, such that f(x) has not been defined in any stages < s. 
xs, if it exists, will be a multiple of 3. Note that / constructed may not be recursive. 
Execute stages 0, 1,2, . . . . 

Begin stage s 

If / gets totally defined by stages < s, then this stage does not do anything; 
otherwise the following steps are executed. 

0. By the implicit use of Kleene's recursion theorem, there exists an e,, such that 
the (partial) function <pe, is defined as follows. 

1. For x < xs, let <pe.(x) = f(x). 

2. Let / (* , ) = pe,(xs) a 0, / ( ." , +1) = *>«.(*.+ 1) = e„ / (a . ,+2) = ^e,(a;5+2) = 
max({$e,(a;) | * < * , + ! } ) + 1 -

3. for y = 1 + (x,/3) to oo do 

if (Vto | xs < to < 3y)[v>M(Ve.[«])(3j/)i] V y G W, then 
if max({*M(v...H)(3!/) \xs<w< 3y}) < *,(y) then 
3.1. Let /(3y) = v?as(32/) = 1 + m a x ( { p M t > e > ] ) ( 3 i / ) | a;s < 

to < 3y}). 
else 

Let/ (3y) = v?e.(3y) = l. 
endif 
L e t / ( 3 y + l ) = 9>, .(3y+l) = 0. 
Let /(3y + 2) = ^ e .(3y + 2) = 1 + max({$e.(a;) | x < 3y + 2}). 

else <Pe, does not get defined anymore. 

endif 
endfor 

End stage s 

We now consider the following cases. 
Case 1: Infinitely many stages are needed to define / . 

In this case clearly, {x \ /(3a;) = 0} is infinite and (Va;)(3a;' > x)[VM(/[*']) € 

71}. 

Case 2: For some stage s, / gets completely defined in stage s. 



Refinements of Inductive Inference by Popperian and Reliable Machines 37 

Let s be such that, for all but finitely many x, f(x) gets defined in stage 
s. Now by construction <pet — f 6 C. But by the diagonalization in 
step 3.1 (which must happen infinitely often, since complement^ , ) is 
infinite), for all w > xs, ^Mf/M) ^* I-

From the above cases it follows that C £ P^-Bc*. 

Corollary 4. TZ £ P^Bc* . 

As a Corollary to Theorems 25 and 27 below, we have 

Corollary 5. P^Ex? - TEx -t. 0. 

A slight modification to the proof of Theorem 9 can be used to show that 

Theorem 18. P ^ E X Q " C TEX"?, ' , for n' > L ^ - J . 

T h e o r e m 19. For all n, P ^ B c n + 1 - Bc n -. 0. 

P r o o f . Fix n. Let Mo, M i , . . . denote a recursive sequence of inductive inference 
machines such that Bc n = {C | (3i)[C C Bcn(M;)]} (clearly, such recursive sequence 
of machines exist [20]). In [8, 9] a recursive function p is constructed such that, for 
each i, the following three conditions are satisfied. 

(A) {3j)[<pp((ij)) is total ]. 

(B) (Vj, k | j < k)[domam(<pp{{iik))) = 0 V domain(^p ( ( i j ) )) C domain(v?p((i,fc)))]. 

(C) {/ € 11 | /(0) = i A (Vj)[card({* | <Pp({i,m(x)i # /(*)}) < n + 1]} £ 
Bcn(Mi). 

Let C, = {/ 6 U | /(0) = i A (V;.)[card({* | ^« . , ; » (* ) J # /(*)}) < « + Ill-

Note that conditions (A) and (B) imply that, for each i, 

[(V k)[doma,m(<pp({iik))) = 0 V <pP((i,k)) is total ] A 

[card({fc | dom&in(<pp{{ik))) -/ 0}) < oo -> yp((i,max({fc|domain(¥,p{„t))^0})}) is total 

Thus, for all / , 

/ g C. => ( v m)[y>p(i>max({fc<m|*i,(<jifc))(o)<m})) = " + 1 / ] • 

We take C — UieAr^-i- By condition (C) above C £ Be11. Now define M as 
follows. 

M(/[0]) = 0. M ( / [ / + 1]) = p((/(0),max({j < I \ *P«/(o),;»(0) < .})»• It is 
easy to verify that M is *-Popperian on T and C G Bc n + 1 (M) . • 

A proof similar to that of Theorem 19 can be used to show that 
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T h e o r e m 20. P f B c - Ex* jL 0. 

The following theorem was obtained in collaboration with Chen. 

T h e o r e m 2 1 . 7 lGP*jBc* . 

P r o o f . Define M as follows. M(/[n]) = i such that <pi is defined as follows. 

Begin <pi on input y 

Go to stage 0. 

Begin stage s 
Let S = {j < n | (\/x < n)[<S>j(x) <y + s A <Pj(x) = f(x)]}. 
if S = 0, t hen go to stage s + 1 
else 

if $min(S)(y) < «, t h e n output ^min(S)(y) 
else go to stage s + 1. 
endif 

endif 

End stage s 

End 

Now suppose f e l l . Let p = min({j | <fj = /})• Let / > p be such that 
(Vj < p)(3a; < l)[<pj(x) ^ /(a:)]. Now consider V?M(/[t])> f o r * > '• U i s e a s y t o 

see that <PM(f[t]) i s t o t a i - L e t *' = ma,x({^p(x) \ x < t}). Now, for all y > t', 
^M(/[t])(y) = /(y)- T h u s > M P^B^-identifies ft. D 

T h e o r e m 22. For each m, P^Exg - P*rBcm ^ 0. 

P r o o f . Fix m. Let M 0 , M i , . . . be a recursive enumeration of IIMs such that 
P*rBcm = {C | (3i)[C C P ^ B c m ( M , ) ] } . 

Without loss of generality, we assume that, $ is such that, for each j , x, $j(x) > 
1. Let cumcomp(», i ) = Ey<x$i(y). Note that, given i,x,z, it can be effectively 

determined if cumcomp(i, x) > z. 
We will give recursive functions p (of one argument) and g (of three arguments) 

such that, for each e, the following properties hold. 

(A) <pp(e)(e) = 1 and, for each x < e, <pp(e)(x) = 0. 
(B) g is a monotone increasing function in its third argument. 
(C) (Vj)(V+1s > max({e,2j}))[(3y < x){<pj(y)i ± <pp(e)(y)l] V [%{e)(x) < 
g(e, x, cumcomp(i, #))]]. 
(D) <pv(e) is either total or card({a; | <pp(e)(x)]}) = oo. 
(E) M e is *-Popperian onT=) - [<pp(e) £ % A <pp(e) £ Bc m (M e ) ] . 

Let C = {<pp(e) | <pp[e) £ K}. 
We will construct g and p as above later. First we show that C € P ^ E X Q . 



Refinements of Inductive Inference by Popperi'an and Reliable Machines 39 

Define M as follows. Let p0 be such that (Vx)[tpPo(x) = 0]. 

?, if (V* < n)[/(z) = 0]; 
p(e), if e < n A /(e) = 1 A (V* < e)[f(x) = 0] A 

-i(3x < n)[%{e)(x) < n A ¥>p(e)(z) ^ /(*)] A 
M ( / M ) = { - | (3 i<n) (3 .c 0 , . . . , a ; j + 1 | max({e,2j})<x0 < xx < .. .<xj+1 < n) 

[(Vy < * i + i ) [* i (y) < n A ^ ( y ) = /(y)] A 
(Vr < j + l)[$p(e)(a;r) > g(e,xr,cumcomp(j,xr))}]; 

p0, otherwise. 

It is easy to see that M is *-Popperian onTZ (using properties of p and g discussed 
above) and Ex0-identifies each / £ C. Moreover by clause (E), in the properties of 
p and g mentioned above, C $ P^-Bcm . 

We now proceed to construct p and g as claimed above, p and. g are constructed 
by implicit use of operator recursion theorem [7]. For a given e, we describe below 
<pp{e) and g(e, •, •) in stages. Let <pp(e)(x) = 0, for x < e. Let <pp{e)(e) = 1. Let <p'p{e^ 
denote the finite portion of <pP(e) which is defined before stage s. Let cancel = 0. 
Go to stage 0. 

Begin stage s 

1. For t<s, let g(e,s,t) = t. 

2. For x < s, such that <pp{e)(x) has been defined till now, let g(e, x, s) = 

= g(e, x, s - 1) + 1 (if « = 0, then let g(e, 0,0) = 0). 
3. for x = 0 to s do 

3.1. if x <$. domain(^p(e)) then 
3.2. Let X = {j | [j £ cancel] A x > max({e, 2j}) A cumcomp(j, x) < s). 
3.3. If X -- 0 then 

3.4. Let j = min(X). 
3.5. Let <pp{c)(x) = l - 9j(x), 
3.6. Let cancel = cancel U {j}. 
3.7. Letg(e,x,s) = %{e)(x)+[. 
endif 

endif 
endfor 

4. Let / be the 0-extension of ^ p ( e ) defined till now. 

5. if there exist I, x0,X\,..., xm such that the following three conditions are satis­
fied. 

(a) I = XQ < x\ < x2 < •.. < xm < s. 
(b) For r < m, <pp{e)(xr) has not been defined till now. 

(c) <*>M(/[fl)(a;'-) ^ s> f o r r < m -
then 

5.1. For x < I such that <pP(e) has not been defined till now 
let <pp(e)(x) = 0, and 
g(e,x,s) = $p(e)(-c) + s. 



40 J. CASE, S. JAIN AND S.NGO MANGUELLE 

5.2. For r < ro 

let <Pp(e)(Xr) = 1 - <PM(f[l])(X>-)' a n d 

g(e,xr,s) = $p(e)(xr) + s. 

endif 
For each x < s, such that <PP(e) has not been defined till now, let g(e, x, s) = s. 

Go to stage s + 1 
End stage s 

We now show that g and p satisfy the properties (A)-(E) claimed above. Proper­
ties (A) and (B) are immediate from the construction. For property (C) note that, 
for each j and x > max({e,2j})i if cumcomp(j, x) < s and -I(3J/ < x)[ipp(e)(y) [ ^ 
ifj(y)i], then j G X — cancel at step 3.2 in the for loop iteration (at step 3), for x, in 
stage s. But j can be in X — cancel at step 3.2 for at most j + l of the x's. Thus (C) 
holds. If M e is *-Popperian on T, then the if clause at step 5, succeeds for infinitely 
many /. Thus <pp(e) is total. Thus (E) holds. If <pp(e) is not total, then the if clause 
at step 5 succeeds for only finitely many /. But then <pp(e) must diverge on infinitely 
many inputs since <pP(e) can be defined on at most j inputs < max({e,2j}) due to 
step 3. Thus (D) holds. • 

5. PREDICTION PARADIGMS 

Definition 18. A prediction machine is an algorithmic device which computes a 
partial mapping from INIT into N. 

We let M, with or without decorations, range over prediction machines. 

Definition 19. [1, 5] 
(a) M NV-identifies a function / (written: / G NV(M)) iff [(i(r)[M(cr)i] A 

" (V n)[M(f[n]) = /(»)]]. 
(b) NV = {C | (3M)[C C NV(7W)]}. 

Definition 20. [3] 
(a) M NV'-identifies a function / (written: / G NV'(A4)) iff [(Vn)[Af(/[n])}] A 

(V n)[M(f[n]) = /(«)]]. 
(b) N V = {C | (3M)[C C NV'(A4)]}. 

Definition 21. [22] 

(a) M NV'-identifies a function / (written: / G NV"(.M)) iff (V n)[M(f[n]) = 

/(»)]• 
(b) N V " = {C | (3M)[C C NV"(M)]} . 

6. RELATING PREDICTION CLASSES WITH IDENTIFICATION CLASSES 

The Theorem below was first pointed out to us by Jan van Leeuwen. It has been 
independently noted by Barzdin. 
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T h e o r e m 23. NV = PEx . 

P r o o f . Suppose C € P E x and C ^ 0- Let g be a recursive function such that 
C C {<pg(i) | i G N} C 7Z (by Theorem 2 such a g exists). Define a predicting machine 
M as follows. Let pmin(/[/]) = min({/} U {i < I \ (Vz < l)[pg{i)(x) = f(x)]}). 
Let M(f[l]) = *Pg(pm\n(f[i]))(Q- It is e a s y to s e e that M NV-identifies C. Thus 
P E x C NV. 

Suppose M NV-identifies C. Let g be a recursive function such that, for all / , / 
and*< n _ | / W , i f*< / ; 

<Pi{M)\.x) ~ \ M(tpg(f[,])[x]), otherwise. 
Now suppose M NV-identifies / . Let / be such that, for all x > /, M(f[x]) = 

f(x). Then <p>g(s[i]) ~ /• T h u s N V ( X ) C {^(/[j]) | / €K A / <E N}. It follows by 
Theorem 2 that NV(yW) 6 P E x . O 

Theorem 24. [22] N V " = Be. 

P r o o f . Suppose M is given. Without loss generality assume that M is such 
that, for all <r, M(a) ^ ? . Define M as follows. M(f[l]) = <PM(f[i])(^- ** is e a s y t o 

see that Bc(M) C NV"(M). 
Suppose M is given. Let g be a recursive function such that for all / , / and x, 

, „ ) _ / / » . i f * < ' ; 

<PsUmx) - \M(<ps(m[x]), otherwise. 

Let M(/[/]) = g(f[l]). It is easy to see that NV"(.M) C Bc(M). • 

Theo rem 25. T E x C NV' . 

P r o o f . Suppose M is given. Without loss generality assume that M is such 
that, for all cr, M(<r) -£?. Define M as follows. M(f[l]) = VM(/[I])(0- ^ is e a s y t o 

see that TEx(M) C NV'(M). D 

T h e o r e m 26. [22] NV ' C Ex. 

P r o o f . Suppose M is given. We give a machine M which may diverge on 
some inputs. However, for all / 6 NV'(M), there exists i such that ipi = / and 

(V /)[M(/[/]) = i]. It is easy to extend [20] M to a total machine M ' which Ex-
identifies each function NV'-identified by M. Let g be a recursive function such 
that for all / , / and x, 

. / / ( « ) , i f x < / ; 
ftum\x) - \M(<pg(f[l])[x]), otherwise. 

Let M(/[n]) be defined as follows. If (3/ < n)[M(/[/]){], then M(/[n]) diverges; 
otherwise, let ra = min({x | (Vj/ | x < y < n)[M(f[y]) = f(y)]})> a n d then let 
M(/[n]) = g(f[m]). It is easy to verify that M satisfies the properties claimed. Q 

Traces of the trick used by Jun Tarui to prove Corollary 8 below are used in the 
proof of the following theorem. 
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Theorem 27. P f Ex. - N V -- 0. 

P r o o f . Define Dips as follows [11]. Dips(/) = {x + 1 | f(x) > f(x + 1)}. Let 

C-{f\ 

[Dips(/) = 0 A <pm = / A (Vx)[* / (0)(x) < f(x + 1)]] V 
[Dips(/) = {n} A (V* < n - l)[$/ (o)(x) < / (x + 1)] A <pf(n) = / A (Vx > 

n ) [ * / ( n ) ( x ) < / ( x + l ) ] ] 

} 

It easy to see that C € P*rExJ. We show that C & NV ' . Suppose M is given. 
We construct an / such that / 0 NV'(A^). By implicit use of Kleene's recursion 
theorem there exists an e such that the (partial) function <pe may be described as 
follows. 

fe , ifx = 0; 
fe(x) - | M ^ x _ lj)(at) + <pe(x - 1) + $ e (x - 1) + 1, otherwise. 

Now consider the following cases. 
Case 1: <pe is total. 

In this case clearly, <pe € C and M does not NV'-identify <pe. 

Case 2: <pe is not total. 

Let xu be the least x such that <pe(x) is not defined. By implicit use of 
recursion theorem there exists an e' such that the following holds. 

(
<pe(x), i f x < x „ ; 

*«(x„ - 1) + e' + <pe(xu - 1) + 1, ifx = xu; 
e', ifx = x„ + l; 
1 + <*v(x — 1) + Ve'(x — 1), otherwise. 

It is easy to see that <pe> € C. Also, since M(<pe>[xu])1, <pe> £ NV'(M). 
From the above cases it follows that C £ N V D 

Since TEx C NV' , from Theorems 10 and 11 we have the following corollaries. 

Corollary 6. N V - Ex*, ^ 0. 

Corollary 7. N V - \Jm P^Bc"1 ^ 0. 

Theorem 28 . N V - P*rBc* ^ 0. 

P r o o f . Suppose q is such that Wq is a simple set [27]. Let 
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C = {/ 6 V. | The following two conditions are satisfied. 

1. {ar | /(3ar) = 0} C complement^ , ) ; 

(* Note that this implies {x | /(3a;) = 0} is finite. * ) 

2. For y = max({ar | /(3ar) = 0}) and e = f(3y + 1), 

<Pe = f A 
(Vte < y | f(3w) = 0)[domain(v?/(3w+i)) D {ar | a: < min({3u/ + 2 \w' > 

w A f(Zw') = 0})}]. 

} 

It is easy to see that C E NV ' . The diagonalization just below is a modification 
of the diagonalization in the proof of Theorem 17. Suppose M is given. Then we 
construct an / such that one of the following two properties is satisfied. 

(a) {ar | /(3a:) = 0} is infinite and (Var)(3ar' > ar)fc>M(/[*']) <£ %\. 
( b ) / € C a n d / £ B c * ( M ) . 

It will immediately follow that C £ P*rBc*. 
Without loss of generality we assume that M is such that, for all cr, M(<r) ^ ? . 
Now we proceed to construct an / as claimed above. We construct / in stages. 

x, denotes the least x, if any, such that /(ar) has not been defined in stages < s. x,, 
if it exists, will be a multiple of 3. Note that / constructed may not be recursive. 
Execute stages 0, 1 ,2 , . . . . 

Begin stage s 

If / gets totally defined by stages < s, then this stage does not do anything; 
otherwise following steps are executed. 

0. By implicit use of Kleene's recursion theorem there exists an e. such that the 
(partial) function <pe, may be defined as follows. 

1. For x < ar,, let <pe,(x) = /(ar). 

2. Let /(ar.) = ^es(ar,) = 0, /(ar, + l) = <pe,(x, + \) = e„ f(x,+2) = <pe,(x,+2) = 
l+max({$e,(ar) \x<x, + l}). 

Let <pe.(x,+Z) = 1, <pe.(x,+4) = 0, <pe.(x,+h) = l+max({$ e . (z) | ar < x,+4}). 
3. for y = 1 + (x./3) to oo do 

if (Vu; | x, < w < 3 t / ) [y M ( ^ > H ) (3 t / + 3){] V j £ f , then 
if m a x ( { $ M ( ^ H ) ( 3 y + 3) | x, < w < 3t/}) < $,(t/) then 
3.1. Let y>'„(3« + 3) = l + max({ ¥ 3 M ( ^ i [ u ; ] ) (3 t /+3) | x, < 

w < 3y» . 
else 

Le t^„ (3y + 3) = 1. 
endif 
Let <pe,(Zy + 4) = 0. 
Let <pe. (3t/ + 5) = 1 + max({$ e , (x) | ar < 3y + 5}). 
Let /(3y + ar) = <pe,(Zy + ar), for ar < 2. 
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else <pts does not get defined anymore. 

endif 

endfor 

End stage s 

We now consider the following cases. 
Case 1: Infinitely many stages are needed to define / . 

In this case clearly, {x | /(3a;) = 0} is infinite and (Vx)(3x' > i)[PM(/[i']) ^ 
%]. 

Case 2: For some stage s, / gets completely defined in stage s. 

Let s be such that, for all but, finitely many x, f(x) gets defined in stage 
s. Now by construction <pe> = f G C. But by the diagonalization in 
step 3.1 (which must happen infinitely often, since complement(W^) is 
infinite), for all w > xs, VM(/M) ^* /• 

From the above cases it follows that C <£ P*r-Bc*. • 

Corollary 8. (Jun Tarui) N V ' - T E x -£ 0. 

7. RELIABLE FUNCTION IDENTIFICATION 

Definition 22. [5, 19] An IIM is Ex!1-reliable on C just in case (V/ G C)[M(f)\ => 
<Pyi(,\ =a / ] • We say that M is reliable on C if it is Ex-reliable on C. 

Definition 23. 
(a) We say that M RcEx.l-tdentifies f (written / G RcExj(M)) just in case M 

is Exa-reliable on C and M Ex^-identifies / . 

(b) RcEx? = {S | (3M)[S C RcEx?(M)]}. 

In this paper, regarding reliable identification, we will be interested only in the 
classes R ^ E x " and R r E x j . 

Intuitively a machine is reliable if it doesn't converge on functions it fails to iden­
tify. [5] gives a characterization of R^Ex-identification. In the proofs of Theorem 22 
above and Theorem 41 below we employ some the ideas behind this characterization 
from [5]. 

Propos i t ion 3. R r E x £ C RTCEx£ C Ex£. 

8. RELATING POPPERIAN CLASSES WITH RELIABLE CLASSES 

In [14, 15] it was shown that RT CEx"+ 1 - Ex n ^ 0. We extend the theorem to the 
following. 
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Theorem 29. For all n, R r E x n + 1 - Ex n -- 0. 

P r o o f . In [9, 8] a recursive function p was constructed such that, for each i, 
<PP(i)(0) = i, card({x | <pp(i)(x)]}) < n + 1, and {/ | (3i)[<pp(i) C /]} £ Ex n . It is 
easy to see that, for p as claimed above, {/ | (3i)[fP(i) C /]} G R r E x n + 1 . D 

Theo rem 30. For all n, R r E x n + 1 - Ex* ^ 0. 

P r o o f . Let Cn = {/ | card({x | f(x) -4 f(x + 1)}) < n + 1}. It is easy to see 
that Cn G R r E x n + i . It was shown in [11] that Cn <$. E x n . • 

T h e o r e m 31 . PJEx"1 C Re Ex™', where n > L-$j.-J-

P r o o f . Proof of Theorem 9 can be easily adapted to prove the above. We leave 
the details to the reader. • 

T h e o r e m 32. PEx*, - R^Ex* ^ 0. 

P r o o f . Let C = {/ | (V x)[f(x) = 0]}. Clearly, / G PEx*,. Suppose M is given, 
which is Ex*-reliable on U and Ex*-identifies C. Since 11 g Ex, there exists a <x such 
that mindchange(M,cr) > n. Let / be an extension of a such that (V x)[f(x) = 0]. 
Clearly, then / £ R ^ E x ^ M ) . It follows that C <£ R^Ex* . • 

T h e o r e m 33. P*.Ex C Re Ex. 

P r o o f (sketch). Suppose M is given, which is *-Popperian on C. Define, infor­
mally an M' , which, on any input function / , outputs a program, which patches 
the convergent errors, if any, of the last program output by M on / . It is easy to 
see M ' as described above will be reliable on C and Ex-identifies each function Ex 
identified by M. Q 

T h e o r e m 34. PEx? - R K E x n ^ 0. 

P r o o f . Fix n. Let C = {/ € STEP0(/i + 2) | max(range(/)) = n + 2} U {Xx.l}. 
Clearly, C G PEx? . Suppose M, a Ex*-reliable machine on 11, is given such that 
C C Ex*(M). Let j C Xx.l be such that M(y) ^ ? . Let INITSTEP(fc) = {/[m] | 
/ G STEP°(^)}. The theorem now follows using the following claim. 

Cla im 3. (VAr > 0, <r G INITSTEP(fc) | j C a)(3r G INITSTEP(Ar) \<TCT) 
[mindchange(M, r) > n V <Py[,T) =* Xx.k]. 

P r o o f . Suppose a, k is given. Let / be such that, for all x > \<r\,f(x) = k. 
Now there exists an / > \<r\, such that mindchange(/[/], r ) > n or VM(/[/]) = * ^x^ 
(otherwise M is not Ex*-reliable on 11). Since /[/] G INITSTEP(Ar), the claim 
follows. •(Claim 3 and Theorem 34) 
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T h e o r e m 35. RcEx° C P*,Ex°. 

P r o o f . Suppose M is given. Define M ' as follows. Let po be a program such 
that (Vx)[<pp0(x) = 0]. 

M'(f[l]) = ( M 0*M) ' i f mindchange(M, /[.]) < n; 
\ p o , otherwise. 

It is easy to see that Ex° (M) C Ex°(M' ) . Moreover if M is reliable on / , then M ' 
is *-Popperian on / . D 

Theo rem 36. TExg - R^Ex* ^ 0. 

P r o o f . First we prove the following claim. 

Claim 4. If M is Ex*-reliable on 11, then for all a such that M(a) ^ ? , there exists 
a r D a such that M(<r) ^ M( r ) . 

P r o o f . Suppose otherwise. Then for all / such that a C / , M ( / ) = M(<r). This 
along with Ex*-reliability of M on 11 implies that (V/ G ~R \ a C / ) [ / =* <PM(<T)}-
This is clearly false. A contradiction. D(Claim 4) 

Now let C = {/ | <£>/(o) = / } . Clearly, C e TEx° . Suppose by way of contradiction 
that M R7*Ex*-identifies C. Then by the implicit use of Kleene's recursion theorem 
there exists an e such that the (partial) function <pe may be described as follows. 
Let <pe(0) = e. Let xs denote the least x such that <pe(x) has not been defined before 
stage s. Go to stage s. 

Begin stage s 

if M(y>e [*,])=? 
then 

let <pe(xs) = 0. Go to stage s + 1. 
endif 
Search for an extension r of <pe[xs] such that M(<pe[xs]) ^ M(r ) . 
If and when such a r is found, 

for x such that xs < x < |r | , let <pe(x) = y such that (x, y) € r. 

Go to stage s + 1. 

End stage s 

Now consider the following cases. 
Case 1: All stages terminate. 

In this case clearly <pe is total and a member of C. Moreover, M(<pe)\-

Case 2: Some stage s does not terminate. 

In this case, by Claim 4, M is not Ex*-reliable on It. 

From the above cases we have that C <£ R-^Ex*. D 
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T h e o r e m 37. R r E x 0 - P E x -t 0. 

P r o o f . Let C = {/ | ipm = / A (Var)[*/(0)(*) < / (« + 1)]}- Clearly, C € 
R r E x ° . Suppose M is given. Without loss of generality assume that, for all a, 
M(tr) 7^?. By the implicit use of Kleene's recursion theorem there exists an e such 
that the (partial) function <pe may be defined as follows. 

fe, if X = 0; 
M * ) - \ l + * . ( * - 1) + ¥>M(„.[-])(-0. otherwise. 

Now if M is Popperian, then ipe is (a) total, (b) a member of C, and (c) not 
Ex-identified by M. D 

T h e o r e m 38. R r E x ? - NV ' -* 0. 

P r o o f . Let C be as defined in the proof of Theorem 27. It is easy to see that 
C e R T E x ? . D 

T h e o r e m 39. For all n, RcEx* C P*Bc. 

P r o o f . Fix n, C- Suppose M, Ex*-reliable on C, is given. Define M' as follows. 
Let patch be a recursive function such that, for all i, f, I and x, 

, . / / ( * ) , i f x < / ; 
Vp-tch(../M)(«) = ( w ( _ ) i o t h e r w i s e 

Let p0 be such that <pPo(x) = 0, for all x. 

( ? , i fM( / [ / ] )=? ; 
M'(/[/]) = { Po, if mindchange(M,/[/]) > n; 

[patch(M(/[/]) , /[ /]) , otherwise. 

It is easy to see that M ' is *-Popperian on C and Ex* (M) C Bc(M') . D 

T h e o r e m 40. R ^ E X Q - P f Be* ^ 0. 

P r o o f . Let q be such that Wq is a simple set. Let M o , M i , . . . be a recursive 
enumeration of the inductive inference machines such that 

for all i, <r, M,-(<r) ^ ? , and 
P f Be* = {C | (3i)[C C P f Bc*(M,)]}. 

Clearly, such recursive enumerations exist. 
The proof of this theorem extends the idea used in the proof of Theorem 16. We 

will describe a recursive sequence of (partial) recursive functions, <PP(.). Then using 
these (partial) recursive functions, we will describe a sequence of total functions 
ho, hi, h^, ••• . hi may or may not be recursive. However, if M,- is *-Popperian on 
T, then hi will be recursive. We will let C — {hi \ hi € 11} to witness the theorem. 

We now proceed to describe the (partial) recursive function <PP(e) for arbitrary e. 
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We assume without loss of generality that 4> is such that, for all i and x, <*>.(.") > x. 
Let <pp(e)(0) = e. Let <PPre) denote the part of <PP(e) defined before stage s. For 
each s, let x° — 0 and, for i > 0, x\ denote i-th. member (in increasing order) of 
complement(domain(^>e)). Let gs denote the 0-extension of <Ppie)- Let valjj be the 
recursive function such that, for all x, valo(x) ='•". Let t = 1. Intuitively t denotes 
a time variable. The use of this time variable on outputs of <pP(e) will allow us to 
determine, effectively in e,x and y, whether <pp(e)(x) = y+\. Go to stage 0. 

Begin stage s 

1. for i = (0,0) to oo do 
Let j , k be such that i = (j, k). 
Lett = t + \. 
if (Vu> | x{ <w< x{ + 1)[<1>MAgt[w])(x

j+1) < k] then 
Go to step 2. 

else if val^(i + 1) 6 Wq>k then 
Go to step 3. 

endif 
endfor 

2. Let <pp(e)(x{+1) = t + 1 + m a x ( { m ( j i [ w ] ) ( l > + 1 ) | x{ < w < x{+1}). 

Go to step 4. • 

3. Let ipKe)(x{+1) = t + I. 

4. Let val*+1(x) = val,(a;), for x < j . 

Let val*+](z) = \afs(x) + 1, for * > j -

Go to stage s + 1. 

End stage s 

Note that it can be determined, effectively in e, x and y, whether tpp(e)(x) = y+1. 
We now proceed to define he. 
Consider the following cases. 

Case 1: For all but finitely many i, xl\. 

In this case clearly <pP(e) converges on all but finitely many inputs. Let 
/ie be the 0-extension of <pp(e)- Let i; be the largest i such that x'[. Let 
s be such that x\l = x". Now for all s1 > s such that val^,(i; + 1) 0 
Wq, (Vw | *<< < w < * ' ;+ 1)bp ( e )K'+ 1)j -- <PM(gMM''+1W (by the 
diagonalization at step 2 in some stage s" > s'; this diagonalization must 
happen since xi,+1\). Since, for infinitely many s', valj,(i; + 1) $ Wq, 
we have that M e does not Bc*-identify he. 

Case 2: For each i, x%[. 

In this case, it is easy to see that M e cannot be *-Popperian on T. Let 
he be the 0-extension of <pP(e)- We claim that he cannot be recursive. 
Suppose otherwise. Then let 0 < y\ < y? < ... be all the inputs > 0 on 
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which he is 0. Now consider the set Le = {val*(j) | j > 0 A r j = yj}. 
Clearly, Le is recursively enumerable, infinite and C complement(W?). 
But this is not possible, since Wq is a simple set. Thus he cannot be 
recursive. 

Now consider the class C = {he \ he £ 11}. By the analysis above C £ P*rBc*. 
We now informally describe the behavior of a machine M, which is Ex*-reliable 
on V.., and Ex*,-identifies C. M on input function / first outputs p(/(0)). Then it 
searches for an x such that 

(a) Vp(/(o))(i)l # / (*) o r 

(b) f(x) > 0 and Vp(/(0))(*) ? / (*)• 

Note that by the comment at the end of construction above, (b) above can be 
effectively tested. If and when such an x is found M, then, proceeds to diverge on 
the function / . It is easy to see that M is Ex*-reliable on V, and Exn-identifies C. • 

Lemma 1. [5] Suppose M is reliable on T. Then there exists a recursive h such 

that (V/ e Ex(M) | range(/) C {0, l})(3j | Vj = /)(V x)[*j(x) < h(x)}. 

Theorem 4 1 . P^Exo - R T E x ^ 0. 

P roof . The idea is to construct a class consisting of arbitrarily complex 0-1 func­
tions which can be P^Ex-identified, and then use Lemma 1 for the diagonalization. 

We will simultaneously define recursive functions g and p such that, for each e, 
the following three conditions are satisfied. 

(a) ¥p(e)(e) = 1 and, for x < e, <pp(e)(x) = 0. 
(b) domain(^p(e)) is either N or an initial segment of N and range(</?p(e)) C 

{0,1}-
(c) If <pe is total, then 

(c.l) ¥?P(e) is total, 
(c.2) (Vj)(V'+1* > max({e, j}))[(3y < x)[<pj(y) -<• <pp{e)(y)} V 

[(J>p(e)(^')<ff(e,a;,<I)j(a'))]]>and 

(C.3) (Vj | <pj = Vp(e))(V x)[*j(x) > <pe(x)}. 

Now let C = {fp(e) I fe is total}. We will construct g and p as above later. First 
we show that C G P*^Exo-

Define M as follows. Let p0 be such that (Vx')[y>Po(x) = 0]. 

?, if (Vz < n)[f(x) = 0]; 
p(e), if e < n A /(e) = 1 A (Vz < e)[/(x) = 0] A 

- ( 3 * < n)[%(e)(x) < n A <pp(e)(x) 7- /(*)] A 
M(/[n]) = !, ->(3j < n)(3x0,..., xj+l | max({e, j}) < x0 < xx < ... < xj + l < n) 

[(My < xj + l)[^(y) < n A Vi(y) = f(y)] A 
(Vr < j + l ) [* p ( 0 (x r ) > g(e, .--,*,•(*..))]]; 

pn, otherwise. 
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It is easy to see that M is *-Popperian on 1Z (using properties of p and g discussed 
above) and Exo-identifies each / _ C. 

Also by Lemma 1 and clause (c.3) in the property of p and g given above we have 
that C <£ R r E x . 

We now proceed to construct p and g as claimed above, p and g are constructed 
by implicit use of parametric recursion theorem. For given e and x, we describe 
in stages below <pp(e)(x) and g(e,x, •). (it will be easy to see that the definition is 
effective in e and _). The construction also maintains a cancellation list. cancel_ 
denotes the set of programs which have been diagonalized against on inputs < x. 
For x < e, let <pp(e)(x) = 0. Let <pp(e)(e) = 1. Let cancele = 0. Go to r.tage 0. 

<pp(e)(x) and g(e,x,-) 

Begin stage s 
1. if x < e or s = 0 or <be(x) > s or <&v(e)(x - 1) > s then 

Let g(e, x,s) = s. 
Go to stage s + 1. 

endif 
2. (* <pe is defined on all inputs < x. * ) 

Let X = {;' | j < x A <!>_ (x) < max({s, <pe(x)})} - cancelx_i. 
3. if <pp(e)(x) has been defined before stage s then let g(e,x,s) = g(e,x,s — 

1) + 1. 
else if X = 0 t h e n 
3+ let ipp('e)(x) = 0, and g(e, x, s) = <_p(e)(_) + 1. 
else 
3.2 let <pp(e)(x - I - <pmm(x)(x), and g(e,x,s) = $p(e)(x) + 1. 

Let cancel_+i = cancels U{min(X)}. 
endif 

4. Go to stage s + 1. 
End stage s 

End <Pp(e)(x) and g(e, x, •) 

We now show that <pp(e) satisfies the properties claimed. 
(a), (b) immediate from construction. 
(c) Suppose tpe is total. Clearly, <pP(e) is total, and thus (c.l) is satisfied. Also 

if j is such that (3 x)[<bj(x) < <pe(x)], then, by the diagonalization at step 3.2, 
ipj 7- <pp(e). Thus (c.3) is satisfied. For (c.2), suppose that x > e is such that 
<pp(e)(x) get defined at stage s. Then, for j < x, either $j(~) > s (and thus 
$P(e)(x) < g(e,x,$j(x))), or (3y < x)[<pp(e)(y) ^ <pj(x)] or j G X - cancel^-i at 
stage s. But j can be in X — cancelx_i in some stage s, for at most j + 1 x's greater 
than j . Thus (c.2) holds. • 

Theorem 42 . P*jEx0 - R r Ex* ^ 0 . 

P r o o f . For / G 11 define / ' as follows. f((x,y)) = f(y). Let C be as in'the 
proof of Theorem 41. Let C = {/' | / G C}. Clearly, C G P^Exo- Moreover 
C G RrEx* t>C € R r E x . But since C £ R T E x , we have that C & RrEx*. • 
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C o r o l l a r y 9. R T J E X 0 - R r E x * ^ 0. 

T h e o r e m 4 3 . R r E x - P f Be* - . 0. 

P r o o f . Note t h a t C as defined in T h e o r e m 17 is a member of R r E x . T h e 

theorem follows. D 

As a corollary to T h e o r e m 22 we have 

C o r o l l a r y 1 0 . For each m, R ^ E X Q - P f B c m ^ 0. 

T h e results ment ioned in this paper resolve all the questions regarding rela t ion­
ship between different learning classes in t roduced in this paper , except for the open 
problems ment ioned below. 

O p e n Q u e s t i o n 1. For C G {H, T}, R e E x - P ^ E x ^ 0? 

O p e n Q u e s t i o n 2 . For C G {H,T}, a and m, R c E x a - P ^ B c m ^ 0? 

(Received June 2, 1992.) 
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