
Kybernetika

John Case; Sanjay Jain; Suzanne Ngo Manguelle
Refinements of inductive inference by Popperian and reliable machines

Kybernetika, Vol. 30 (1994), No. 1, 23--52

Persistent URL: http://dml.cz/dmlcz/124505

Terms of use:
© Institute of Information Theory and Automation AS CR, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124505
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 30 (1 9 9 4) , N U M B E R 1, P A G E S 2 3 - 5 2

REFINEMENTS OF INDUCTIVE INFERENCE
BY POPPERIAN AND RELIABLE MACHINES1

JOHN CASE, SANJAY JAIN AND SUZANNE NGO MANGUELLE

Restricted and unrestricted algorithmic devices which attempt to arrive in the limit at
explanatory computer programs for input functions are studied. The input functions may
be interpreted as summaries of the behavior of real world phenomena. A classification of
criteria of success for such devices is made based on Karl Popper's refutability principle
in philosophy of science. Also considered are criteria of success requiring reliability in the
sense that the devices should not mislead us by converging to faulty programs. The criteria
in the classifications are compared to one another and some interesting tradeoff results are
obtained. The techniques of recursive function theory are employed.

1. INTRODUCTION

Consider a real world phenomenon / that is being investigated by an agent M.
M performs discrete experiments x on / . For example, x might be a particle diffrac­
tion experiment and f(x) the resultant probable distribution on the other side of the
diffraction grating. By a suitable encoding of the experiments and results we may
treat / as a function from iV = {0,1 ,2 , . . .} , the set of natural numbers, to N. A
complete explanation for / is a computer program for / . Such a program for / gives
us predictive power about the results of all possible experiments related to / . We are
concerned about the theoretical properties of the agents which attempt to arrive at
explanations (possibly only nearly correct) for different phenomena. In what follows
we will conceptualize such agents as learners (of programs for functions).

An inductive inference machine (IIM) is an algorithmic device which takes as its
input a graph of a function: N —* At, an ordered pair at a time, and, as it is receiving
its input, outputs computer programs from time to time.

There are several ways in which one may define what it means for a learner to
succeed in explaining a phenomenon. One such criterion is due to Gold [16]. We
say that M Ex-identifies / iff M, fed the graph of / , outputs a non-empty sequence
of programs which converges to a program for / . Note that one may not be able to
algorithmically determine, if and when, the sequence of programs output by M on
/ converges. The class Ex denotes the class of sets of functions, C, such that some

'Research supported in part by NSF Grant # MCS-77-04388.

24 J. CASE, S. JAIN AND S.NGO MANGUELLE

machine Ex-identifies each function in C. Another such criterion, due to [2, 11] is as
follows. We say that M Bc-identifies a function / iff M fed the graph of / , either
outputs a finite sequence of programs, the last of which computes / , or outputs an
infinite sequence of programs, all but finitely many of which compute / . The class
Be denotes the class of sets of functions, C, such that some machine Bc-identifies
each function in C. Ex and Be are examples of what we refer to below as learning
classes.

The above criteria have been extended by allowing anomalies in the final pro­
gram^) [5, 11, 20].

Karl Popper has enunciated the principle that scientific explanations ought to be
subject to refutation [23]. Most of this paper concerns restrictions on the machines
requiring them to output explanations which can be refuted. Precise mathematical
definitions capturing this idea may be found in Section 3.3 below. Our results may be
found in Section 4 below. Corollary 2, also in Section 4, shows interesting tradeoffs
in learning power obtained as one varies the number of anomalies allowed and the
number of mind changes to convergence. For several criteria of success defined with
restrictions suggested by Popper's refutability principle, Corollary 2 provides an
approximate product tradeoff formula by which anomalies can be traded for mind
changes without loss of learning power.

Section 5. introduces prediction machines from [1, 3, 5, 22], which machines ex­
trapolate next values for functions. Section 6. shows how the power of prediction
compares to that of the other success criteria with Popperian restrictions.

Roughly, a machine M is said to be reliable on a class, C, of functions: N —* N,
iff whenever, on / 6 C, the sequence of programs output by M converges to a final
program, that final program "does a good job" of computing / . Intuitively, reliable
machines don't mislead by converging to bad programs. [5, 19] introduce the concept
of reliability, but in the latter reference reliable is called strong. Section 7 provides
the precise definitions. Section 8 deals with comparing learning classes obtained by
requiring machines to be reliable with the other learning classes of this paper.

Some sharp contrasts in learning power appear when the class of functions on
which machines must obey some restriction is varied. For example, taken together
Theorem 21, Corollary 4 and Theorems 17 and 22 from Section 4 point to a tremen­
dous loss of learning power if machines are required to obey a weak Popperian
restriction on the class of all total functions instead of on the class of all computable
functions. Corollary 9 from Section 8 points to a similar result for machines required
to be reliable.

This paper grew out of the much earlier [10]. Carl Smith and Jun Tarui nicely
pointed out some mistakes in [10].

. 2. PRELIMINARIES

Recursion-theoretic concepts not explained below are treated in [27]. N denotes the
set of natural numbers, {0,1, 2 , 3 , . . . } .

* denotes a non-member of N and is assumed to satisfy (Vn)[n < * < oo]. a
and 6, with or without decorations (decorations are subscripts, superscripts and the

Refinements of Inductive Inference by Popperian and Reliable Machines 25

like), range over At U {*}. e, i, j , k, I, m, n, q, r, s, t, u, w, x, y, z, with or without
decorations, range over At. [f J denotes the largest natural number n, such that
n < -. x — y denotes max({0,:n — y}). In some contexts, p, with or without
decorations, ranges over At, being construed as program for a (partial) function. In
other contexts, p, ranges over total functions, with the range of p being construed
as programs for (partial) functions.

We let P, 5', with or without decorations, range over subsets of At. complement(S')
denotes the complement of ,S', i.e. complement(S) = N — S. 6, C, c , D, D respec­
tively denote member of, subset, proper subset, superset and proper superset.
| denotes undefined. [denotes defined. (•,•) denotes a 1-1 mapping from pairs
of natural numbers onto natural numbers. 7Ti, 7r2 are the corresponding projection
functions. (•, •) is extended to ?i-tuples in a natural way. card(P) denotes the car­
dinality of P . So then, 'card(P) < *' means that card(P) is finite. min(P) and
max(P) respectively denote the minimum and maximum element in P . We take
min(0) to be oo and max(0) to be 0.

j), with or without decorations, ranges over partial functions. We identify partial
functions with their graphs. For a e (AtU{*}), r/i = a ?/2 means that card({z |
?/i(a;) ^ t]2(x)}) < a. domain(?/) and range(?/) respectively denote the domain and
range of partial function ?/. For an expression E in x, \x • E(x) denotes the function
/ such that, for all x, f(x) = E(x).

TZ denotes the class of all recursive functions, i.e., total computable functions with
arguments and values from At. T denotes the class of all total functions. f,g,h,
with or without decorations, range over T. C and S, with or without decorations,
range over subsets of T.

0-extension of a partial function ?/ is a total function / such that, for all x,

tt \ _ / 7l(x)i if £ € domain(?7);
|_ 0, otherwise.

<p denotes a fixed acceptable programming system for the partial computable func­
tions: At —* At [26, 27, 17]. (Case showed the acceptable systems are characterized as
those in which every control structure can be constructed; Royer and later Marcoux
examined complexity analogs of this characterization [24, 25, 28, 18].) <pt denotes the
partial computable function computed by program i in the ^-system. We let $ be
an arbitrary Blum complexity measure [6] associated with acceptable programming
system <p; such measures exist for any acceptable programming system [6]. We let
Wi = domain(y>,). Let WiiS = {x < s \ <&i(x) < s}.

• A set S is said to be simple iff (a) S is recursively enumerable, (b) complement(,S)
is infinite and (c) complement^) does not have any infinite recursively enumerable
subset. A class of functions C is said to be an r. e. class iff either C is empty or there
exists a recursive g such that {<pg(i) \ i £ At} — C.

CO oo

The quantifiers 'V', ' 3 ' and '3! ' mean 'for all but finitely many', 'there exist
infinitely many,' and 'there exists a unique' respectively. The quantifier V7 denotes
'for all but at most j ' .

26 J. CASE, S. JAIN AND S.NGO MANGUELLE

3. LEARNING PARADIGMS

For any partial function ?/ and any natural number n such that, for each x < n,
n(z)i, we let i][n] denote the finite initial segment {(x,i](x)) | x < n). Let INIT =
if[n] I / S 1 A n € A/}. We let a, r and 7, with or without decorations, range
over INIT.

Definition 1 . [16] A learning machine is an algorithmic, device which computes a
mapping from INIT into At U {?} such that, if M(/[n]) ^ ? , then M(/[n + 1]) #? .

We let M, with or without decorations, range over learning machines. In Defi­
nition 1 above, '? ' denotes the situation when M outputs "no conjecture" on some
<r e INIT.

In Definition 2 below we spell out what it means for a learning machine on a
function to converge in the limit.

Definition 2. Suppose M is a learning machine and / is a computable function.

M(/) J (read: M (/) converges) just in case (3«)(V n) [M(f[n]) = i]. If M(/) J , then

M (/) is defined = the unique i such that (V n)[M(/[n]) = j], otherwise we say that

M (/) diverges (written: M(/) f) .

3 .1 . Explanatory Function Identification

We now introduce a criteria for a learning machine to successfully infer a function.

Definition 3 . [16, 5, 11] Let a € At U {*}.

(a) M Exaidentifies f (written: / 6 Ex a (M)) just in case (3i \ ip, = a /) [M (/) | =»'].

(b) Ex a = {$ I (3M)[s C Ex a (M)]}.

We sometimes write Ex for Ex 0 including in the names of those learning classes
introduced in later sections where 'Ex 0 ' is a proper substring of those names.

The notion of Ex* identification is due to Blum and Blum [5]. For a given / and
M, we refer to each instance of the case, ? ^ M(/[n]) ^ M(/ [n + 1]) as a mind
change by M on / . Case and Smith [11] (see also [4]) introduce a refinement of
the above notion of Ex-identification by bounding the number of times a learning
machine is allowed to change its mind before converging to a correct program for
the function being learned. Definition 4 below describes this notion.

Definition 4 . [11] Suppose a, b £ N U {*}.

(a) M Exa-identifies f (written: / 6 Ex£(M)) just in case [(3i | (pt = a /)

(V n)[M(/[n]) = i] A card({» |? ? M(/[n])-- M(/ [n + 1])}) < 6].

(b) Exa = {C I (3M)[C C Ex a (M)]} .

Refinements of Inductive Inference by Popperian and Reliable Machines 27

Clearly, Ex-identification is the same as Ex,-identification. We sometimes write
Ex" for Ex , including in the names of those learning classes introduced in later
sections where 'Ex a ' is a proper substring of those names.

We now define a (partial) function mindchange.

Definition 5. mindchange(M, f[n]) = card({m < n |? ^ M (/ [m]) # M(/[m+1])}) .
mindchange(M, /) = card({n |? •£ M(f[n]) ± M(/[n + 1])}).

3 .2 . Behaviorally Correct Identification

Case and Smith [11] introduced another infinite hierarchy of identification criteria
which we describe below. "Be" stands for behaviorally correct. Barzdin [2] essen­
tially introduced the notion Be0 .

Definition 6. [11] Let a G N U {*}.

(a) M Be"-identifies f (written: / £ Bc°(M)) just in case (V n)[fM(j[n))
 =" ft-

(b) Bca = {S | (3M)[5 C Bc a(M)]}.

We sometimes write Be for Be 0 including in the names of those learning classes
introduced in later sections where 'Be 0 ' is a proper substring of those names.

Theorem 1 just below states some of the basic hierarchy results about the Ex a

and Be" classes.

Theorem 1. For all m, n

(a) E x m + 1 - E x m ф 0, (e) Ex* C Bc

(b) Ex° + 1 - Ex*. ф 0, (f) B c m c B c m + 1

(c) Ex*, - Ц„eyv E x m ф 0, (g) U m Є j V B c m CBc*

(d) Ex° - ц e J V E X ; ф 0, (h) 7гeвc*.

Parts (a), (b), (c), (d), (f) and (g) are due to Case and Smith [11]. John Steel first
observed that Ex* C Be and the diagonalization in part (e) is due to Harrington
and Case [11]. Part (h) is due to Harrington [11]. Blum and Blum [5] first showed
that Ex C Ex*. Barzdin [2] first showed that Ex C Be.

3.3. Popperian Function Identification

The following definitions are based on Popper's refutability principle: incorrect pro­
grams computing total functions are always refutable.

Definition 7. M is Popperian on f iff, for all n such that M(/[?i])9^?, ¥>M(/[n]) £^-
M is Popperian on C just in case it is Popperian on each / e C. We say that M is
Popperian just in case it is Popperian on T.

28 J. CASE, S. JAIN AND S.NGO MANGUELLE

Definition 8.

(a) We say that M PcExa-identifies f (written / G PcEx a (M)) just in case M
is Popperian on C and M Exa-identifies / .

(b) P c E x a = {S | (3M)[s C P c E x a (M)] } .

Definition 9.

(a) We say that M PcBc"-identifies f (written / G P c B c a (M)) just in case M
is Popperian on C and M Bca-identifies / .

(b) P c B c a = {S | (3M)[S C P c B c a (M)] } .

For I G {Exa , Bc a } , we sometimes write P I for P^-I Besides its relation to Popper's
refutability principle, P E x is a mathematically natural class with many character­
izations and closure properties. The reader will see some of these characterizations
in Section 4.

P E x above adheres closest to Popper's refutability principle. We consider some
less restricted variations below.

Definition 10. M is *-Popperian on f iff, for all but finitely many n such that
M(/[n]) ^ ? , <PM(f\n\) G ̂ ' M is *- Popperian on C just in case it is *-Popperian on
each / G C. We say that M is *-Popperian just in case it is *-Popperian on T.

Definition 11.

(a) We say that M P*.Exa-identifies f (written / G P c E x a (M)) just in case M
is *-Popperian on C and M Exa-identifies / .

(b) P c E x a = {S | (3M)[S C P c E x a (M)] } .

Definition 12.

(a) We say that M P*cBca-identifies f (written / G P c B c a (M)) just in case M
is *-Popperian on C and M Bca-identifies / .

(b) P*Bc a = {S | (3M)[s C P*Bc a (M)}] .

In this paper we will be interested in the above definitions for C G {11, T}.
In the following definitions we relax the Popper refutability restriction in another

direction. In these definitions we require a machine to output programs for -total
functions only on the graphs of functions which it identifies.

Definition 13.

(a) We say that M TExa-identifies f (written: / G TEx a (M)) just in case M
Exa-identifies / and (Vn)[M(/[n]) =? V ^M(/[n]) € K]-

(b) T E x a = {C | (3M)[e C TEx a (M)]} .

Refinements of Inductive Inference by Popperian and Reliable Machines 29

Definition 14.
(a) We say that M TBca-identifies / (written: / G TBc a (M)) just in case M

Bca-identifies / and (Vn)[M(/[n]) =? V <PM(j[n]) G n^
(b) TBc a = {6* | (3M)[C C TBc a (M)]} .

The following proposition is immediate from the definitions.

Propos i t ion 1.

(a) P E x a C TEx a C Ex a . (d) P*-Ex C P*-Bc.

(b) P E x a CP*rEx a C P * , E x a C E x a . (e) T E x a C T B c a .

(c) P ^ E x C P p c .

Which of the subset relations iu Proposition 1 are proper is completely spelled
out in Section 4.

4. RELATING DIFFERENT POPPERIAN CLASSES

Following Theorem gives a characterization of PEx .

Theo rem 2. [3, 11] C G P E x iff there exists an r. e. class C C R, such that C C C.

P r o o f . Suppose C G P E x . Let M be a Popperian machine which Ex-identifies
each function in C. Let C = {<PM(a) I M(<r) 7^?}. It is easy to see that 7v D C 2 C
and C is an r.e. class.

Suppose C ^ 0 is an r. e. class. We construct a Popperian machine M such that
C C Ex(M). Suppose g G 11 is such that {<pg(i) \ i G N} = C. Define M as follows.

M (/ H) = min({n) U {i < n | (Vx < n)[/(x) = ^(,-)(^)]})

It is easy to see that M is Popperian and that C C Ex(M). •

Using the above characterization of P E x we obtain the following closure property
of P E x .

T h e o r e m 3. PTJBC* = P E x .

P r o o f . Clearly any machine which is Popperian on all the recursive functions is
Popperian. Thus it suffices to show that PBc* C P E x . Suppose M is Popperian
and M Bc*-identifies C. Let C = { p M ((j) | M(<r) ^ ? } . Clearly, C C C ' C R a n d C
is an r.e. class. Thus, by Theorem 2, C G P E x . O

The following characterization of P E x was first proved for N V (see Definition 19
in Section 5; it is proved in Section 6. that N V = PEx) by Barzdin and Freivalds
[3] and independently by Adelman [5].

30 J- CASE, S. JAIN AND S.NGO MANGUELLE

T h e o r e m 4. P E x = {C | (3ft 6 7l)(V/ € C)(3i)[W = / A (V *)[*.(x) < /.(*)]]}.

Let K = {a; | <px(x)l}. A class of functions C is said to be r. e. in A' class iff
either C is empty or there exists a function g, which can be computed relative to an
oracle for K, such that C = {<pg(i) \i & N}.

Theorem 5. [11] P E x = {C \ C is contained in some r.e. in K class of recursive
functions }.

The following theorem gives a closure property of TEx . The proof was obtained
in collaboration with K.J. Chen.

T h e o r e m 6. TBc* = TEx .

P r o o f . It suffices to show that TBc* C TEx . Suppose M is given. We construct
an M ' such that TBc*(M) C TEx(M') . Let M ' be defined as follows. Let p0 be a
program for Xx.Q.

?, i fM(/ [n])=? ;
M (/ H) , if (3j < n | M(/[i]) T-?)

[card({x<n|^M(/m)(a:)<n A PMc/M)1^)?-/(*)}) = 0],
and m = min({i | M(/[/]) ^ ? A

c-Ard({x<n\$Mub])(x)<n A VM(/[i])(x) ^f(x)}) = °})'
Po, otherwise.

м'(/M) =

It is easy to verify that M' TEx-identifies any function TBc*-identified by M. •

The following theorem gives the closure properties for P*«Ex, for C £ {71,T}.

T h e o r e m 7.

(a) P^Ex* = P ^ E x . (b) P f E x * = P r E x .

P r o o f . Suppose M is given. Let converr(/[n]) = {x < n | ^M(f[n]) < n A

PMlfM) ^ f(x))- L e t Pa tch be a recursive function such that, for all i, x and finite
set of pairs, D,

(„\-hm> if(3y)[(x,y)en]andym=mm({y\(x,y)eD});
Wd,(..D)() - | w (j c) > o t h e r w i s e .

Define M' as follows.
If M(/[n]) =?, then M'(/[n]) =?; otherwise M'(/[n]) = patch(M(/[n]), {(x,y) |

/(a;) = y A x £ converr(/[n])}). It is easy to see that if M is *-Popperian on C,
then so is M' . Also, if for an / , £>M (/)

 = * •!" all<^ ^M(/) e ^ ' t n e n VM'(/) = /• D

We now proceed to determine the exact relationship between the different learning
classes, defined in this paper, based on Popper's refutability principle.

Refinements of Inductive Inference by Popperian and Reliable Machines 31

T h e o r e m 8. For all n, P E x n + 1 - Ex* ^ 0.

P r o o f . Let Cn = {/ | card({ar | f(x) ^ f(x + 1)}) < n + 1}. It is easy to see
that Cn G P E x n + 1 . It was shown in [11] that Cn <£ Ex*. D

The following theorem witnesses an interesting tradeoff. For Popperian classes,
it is possible to completely tradeoff anomalies for mind change bounds. Surprising
similar tradeoff results have also been found for team learning [29, 21] (see the
discussion after Corollary 2 below), with teamsize in the role of mind changes.

Theo rem 9. Suppose m, n, m' are given. Let n' = (1 + n) • (1 + Lm/+1J) — 1.

Then, for I G {PEx, TEx, P*rEx, P^Ex} , I m C Im,'.

P r o o f . Suppose M Im-identifies C. We give an M' which Im'-identifies C. If

M(/[n]) =?, then let converr(/[n]) = 0; otherwise let converr(/[n]) = {x < n \

^M(jM) < n ^ (PM(j[n]) 7̂ f(x)}- Le t patch be a recursive function such that for
a11 *> f> n> , . f f(x), if x G converr(/H);

<Pv^iJlnJ>(*)={%£t otherwise.
Let M ' be defined as follows.

?, i fM(/ [n])=? ;
M (/ H) , if n = 0 or M(/[n]) ± M(f[n - 1]);
patch(M(/[n]), f[n}), if n > 0 and M(/[n]) = M(/[n - 1]) --? and

(3i I 0 < i < [^+TJ)[card(converr(/[n - 1]))
< i • (m1 + 1) < card(converr(/[n]))];

l M ' (/ [n - l]) , otherwise.

м'(/H) =

It is easy to see that,

(a) if <PM(j[n]) i s t o t a l > t h e n s o i s fM'(][n\v
(b) if the number of mind changes by M on / is bounded by n, then the
number of mind changes by M' on / is bounded by (7i+l)-(l + [m7^.1 J)—L
and

(c) if <PM(j) G Tl and ^M(/) = m f> t h e n ^M(/) ~m f-

This completes the proof of the theorem. •

Definition 15. / is a S T E P m function iff there exist i, n 0 , n\,.. . ,n. , So, S\,...,Si
such that the following conditions are satisfied.

(a) 0 = n 0 < iii < " 2 < • • • < «»•

(b) iij < min(.S'j), max(,S'j) < »j + 1, for j < i (where n ; + 1 is taken to be oo).

(c) card(Sj) < m, for j < i.

(d) (Vxe\jj<isj)[f(x) = o}.
(e) (Vj < i)(V* | n j < x < n i + 1 A x $ Sj)[f(x) = j + 1].

Definition 16. STEP m (n) = {/| / i s a S T E P m function and max(range(/)) 5 „} .

32 J. CASE, S. JAIN AND S.NGO MANGUELLE

Definition 17. For n > 0, let STEPINITm(n) = {f[x] \x£NAfe STEPm(n) A
f(x) = n). Let STEPINITm(0) = {0}.

T h e o r e m 10. Suppose ra, n, ra' are given. Then for n' = (l + n)-(l + [^r}—'})~-2>

P E x m - Exm,' -- 0.

P r o o f . Clearly, STEPm(n + 1) G P E x m . Suppose that M Exm'-identifies
S T E P m (n + l) .

Claim 1. For all / > 0, for all a t= STEPINlTm(/), there exists a r £
STEPINIT m (/+ 1) such that <x C r and mindchange(M, r) > (1 + [j^+rJ) +
mindchange(M, a).
There exists a r 6 STEPlNITm(l) such that mindchange(M, r) > (1 + [~r\j\)~ U

The above claim follows immediately from the following easy to prove claim.

Claim 2. Suppose / > 0, a G STEPINlTm(/) such that, there exists an i < LmT+rJ ,
card({x | (ar,0) G r A x > min({y \ (y,l) G <r})}) = i • (ra' + 1). Then there
exists a r G STEPINITm(/) such that, a C r, J J M (T) =* /, M(cr) ^ M(r) and
card({z | (x, 0) G r A z > min({y | (y, /) G <r})}) - (i + 1) • (ra' + 1).

Now the existence of an / G STEPm(n + 1) such that mindchange(M,/) >

(1 + n)(\ + L S P + T J) . - 1 follows from Claim 1. Thus STEPm(n + 1) £ Exm,'. •

We have the following corollary to the proof of Theorem 10.

Corollary 1. PExJ - U m U„ E x™ ?- ••

As a corollary to Theorems 9 and 10 we have

Corol lary 2. Suppose [I = P E x and J G {PEx, TEx, P^-Ex, P ^ E x , Ex}] or
[1= P f E x and J G {P^-Ex, P ^ E x , Ex}] or [I G { T E x , P ^ E x } and J G {I, Ex}].
Then 1° C Jg, iff the following two conditions are satisfied.

(a) 6 < 6'.
(b) a' = * V b' = * V [a G At A £±f > f ^ l] .

The inequality with fractions in part (b) of Corollary 2 is just an approximate
product tradeoff between anomalies and mind changes. Anomalies can be traded for
mind changes, but part (a) blocks tradeoffs in the other direction. We surprisingly
see the exact same tradeoff formula in team learning [29, 21], an apparently quite
different context. Somewhat similar tradeoff formulas for Bc-identification were
observed in [12, 13].

P ropos i t ion 2. TExg = Exjj.

P r o o f . Follows from the Definitions of the classes. •

Refinements of Inductive Inference by Popperian and Reliable Machines 33

Theorem 11 . T E x 0 - L L P ^ B c m # 0.

P r o o f . Let C = {/ | <fif(o) = / } • Clearly, C £ TEx0 . Suppose M and m are
given. We show below that either M is not *-Popperian on It or there exists an
/ £ C which is not Bcm-identified by M. Without loss of generality we assume
that, for all <r, M(<r) ^ ? . By the implicit use of the Kleene recursion theorem ([27,
Page 214]), there exists an e such that the (partial) function <pe may be described
as follows.

Let xs denote the least x such that <pe(x) has not been defined before stage s.
Let <pe(0) = e. Go to stage 0.

Begin stage s

1. Search for a a £ INIT, such that ^ [z j] C a and, for all x < m, <PM.(a)(\a\~^x)^-

2. If and when such a <r is found,
for x such that xs < x < \a\, let <pe(x) = y, where (x, y) £ a and
for x such that \<r\ < x < \<r\ + m, let <pe(x) = <PM(<r)(x) + *•

3. Go to stage s + 1.

End stage s.

Now we consider the following cases.
Case 1: All stages terminate.

In this case clearly, <pe £ C. However, by the diagonalization at step
2, for infinitely many /, PM^M) ^ m f«- Thus M does not Bcm-identify
<pe ec.

Case 2: Some stage s does not terminate.

In this case M does not output a program for a total function, on
any extension of <pe[xs]. Thus M is not *-Popperian on H.

From the above cases we have that C £ P^Bc" 1 . •

Corollary 3 . T E x 0 - P ^ E x * ^ 0.

T h e o r e m 12. P^-Exg - PEx ^ 0.

P r o o f . Let C = {/ | <pf(o) = / A (V.-)[$/(0)(.-) < f(x + 1)]}. The concept
behind this C is from [5]. It is easy to see that C £ P^-EXQ. Suppose by way of
contradiction M, a Popperian machine, is given, such that C C Ex(M). Without
loss of generality we assume that M is such that, for all a, M(<r) 7^?. By the implicit
use of Kleene's recursion theorem there exists an e such that the (partial) function
<pe may be described as follows.

Je, ifx = 0;
VeW - I $e(x _ I) + cpM{^[x])(x) + 1, otherwise.

Clearly, if M is Popperian, then <pe £ C. Moreover, it is easy to see that <pe g
PEx(M). •

34 J. CASE, S. JAIN AND S.NGO MANGUELLE

T h e o r e m 13. Ex™ C P fBc* .

P r o o f . Suppose M Exm-identifies C. Let p0 be a program such that, for all x,
<pPo(x) = 0. Let prog be a recursive function such that, for all i, f, I and x

(/ (*) , i f x < / ;
<Ppr°&(i,f[i])(x) - \ °> if card({y < / | *.(y) > x}) > m;

I <Pi(x), otherwise.

Let M ' be defined as follows.

(? , i fM(/ [/])=? ;
M'(/[i]) = < Po, if mindchange(M, /[/]) > n;

[prog(M(/[/]), /[/]), otherwise.

Clearly, E x m (M) C Bc*(M'). Now we show that M ' is *-Popperian on T. Suppose
/ is a total function. It is easy to see that M ' is *-Popperian on / by considering
each of the following three cases.

(1) mindchange(M,/) > n,
(2) mindchange(M,/) < n and card({a; | ^M(/) (a ;)0) > m>
(3) mindchange(M,/) < n and card({a; | <PM.(f)(x)^)) <. m-

Thus Ex™ C P*rBc*. D

T h e o r e m 14. T E x C P*-Bc*.

P r o o f . This proof is very similar to the proof of Theorem 13. Suppose M
TEx-identifies C. Without loss of generality assume that M is such that, for all a,
M(a) ^ ? . Define M ' as follows. Let prog be a recursive function such that, for all
/ , / and x

(f(x), i f z < / ;

<ppneim(x) =\o, if (3!' < 0 H ({ y < i I *M(/[.'])(w) > *)) > oi;
I PM(f[i])(x)> otherwise.

Let M ' be defined as follows. M'(/[/]) = prog(/[/]). Clearly, TEx(M) C Bc*(M').
Now we show that M ' is *-Popperian on T. Suppose / is a total function. Now it
is easy to see that M ' is *-Popperian on / by considering the following two cases.

(i)(v/)bM(/to)e^-

(2) - (V /) ^ M (/ [(]) G 7 J] .

Thus T E x CP*rBc*. D

Combining the ideas of the proofs of Theorems 13 and 14 it can be shown that

T h e o r e m 15. P ^ E x * C P f B c * .

Refinements of Inductive Inference by Popperian and Reliable Machines 35

Theorem 16. Ex*, - P*rBc* -£ 0.

Proof . Let C — { / | y/(o) —* / } • Clearly, C £ Ex*,. Suppose by way of
contradiction that M is *-Popperian on T and C C Bc*(M). Without loss of
generality we assume that M is such that, for all <r, M(cr) ^ ? . Then by the implicit
use of Kleene's recursion theorem, there exists an e, such that the partial function
(fie may be described as follows.

We assume without loss of generality that <I> is such that, for all i, x, $>i(x) > x.
Let <Pe(0) = c. Let <p\ denote the part of <pe defined before stage s. For each s, let
x° = 0 and, for i > 0, x's = i-th member of complement(domain(y>')) in increasing
order. Let gs denote the 0-extension of <p%. Go to stage 0.

Begin stage s

1. for i = (0,0) to oo do
Let j , k be such that i = (j, k).

if (Vu> \x{<w< *£+ 1)[*M(j.M)(i Bi+ 1) - fc] t h e n

Go to step 2.
endif

endfor
2. Let <pe(xi+l) = 1 + m a X ({ P M (j i W) W + 1) | x{ < w < x{+'}).

Go to stage s + 1.
End stage s

Since M is *-Popperian on T, all stages must terminate.
Let x* = lim.^oo x\. Now consider the following cases.

Case 1: For all but finitely many i, x'].

In this case clearly <pe converges on all but finitely many inputs. Let g =
the 0-extension of <pe. Clearly, g £ C. Let ,/ be the largest i such that
x'l. Let s be such that x'J = x". Now for all s' > s, (Vtu | x'< < w <
x'.'<+1)[l£,e(z!.'+1H # 'PM(g[w])(x\'-+1)ili (b v t h e diagonalization at step 2
in some stage s" > s'; this diagonalization must happen since x , | + 1 {) .

Case 2: For each i, ar'J.

In this case it is easy to see that M cannot be *-Popperian on T.

From the above cases it follows that C £ P*-Bc*. D

Theorem 17. P^Ex - P^-Bc* -£ 0.

P r o o f . Suppose q is such that Wq is a simple set [27]. Let

C = {/ € It | The following two conditions are satisfied.

1. {x | /(3a:) = 0} C complement(W9);
(* Note that this implies {x | /(3a:) = 0} is finite. *)

2. For y = max({x | /(3a:) = 0}) and e = /(3j/ + 1),
<Pe = f and (Vz > 2/)[max({*„(a;) | x < Zz + 1}) < f(3z + 2)].

}

36 J- CASE, S. JAIN AND S.NGO MANGUELLE

It is easy to see that C G P^Ex. Suppose M is given. Then we construct an /
such that one of the following two properties is satisfied.

(a) {x | /(3a;) = 0} is infinite and (\/x)(3x' > x)[<pM{}[xl]) £ 71}.

(b) / e C a n d / £ B c * (M) .

It will immediately follow that C 0 P*-Bc*.
Without loss of generality we assume that M is such that, for all a, M(<r) ^ ? .
Now we proceed to construct an / as claimed above. We construct / in stages.

xs denotes the least x, if any, such that f(x) has not been defined in any stages < s.
xs, if it exists, will be a multiple of 3. Note that / constructed may not be recursive.
Execute stages 0, 1,2,

Begin stage s

If / gets totally defined by stages < s, then this stage does not do anything;
otherwise the following steps are executed.

0. By the implicit use of Kleene's recursion theorem, there exists an e,, such that
the (partial) function <pe, is defined as follows.

1. For x < xs, let <pe.(x) = f(x).

2. Let / (* ,) = pe,(xs) a 0, / (." , +1) = *>«.(*.+ 1) = e„ / (a . ,+2) = ^e,(a;5+2) =
max({$e,(a;) | * < * , + ! }) + 1 -

3. for y = 1 + (x,/3) to oo do

if (Vto | xs < to < 3y)[v>M(Ve.[«])(3j/)i] V y G W, then
if max({*M(v...H)(3!/) \xs<w< 3y}) < *,(y) then
3.1. Let /(3y) = v?as(32/) = 1 + m a x ({ p M t > e >]) (3 i /) | a;s <

to < 3y}).
else

Let/ (3y) = v?e.(3y) = l.
endif
L e t / (3 y + l) = 9>, .(3y+l) = 0.
Let /(3y + 2) = ^ e .(3y + 2) = 1 + max({$e.(a;) | x < 3y + 2}).

else <Pe, does not get defined anymore.

endif
endfor

End stage s

We now consider the following cases.
Case 1: Infinitely many stages are needed to define / .

In this case clearly, {x \ /(3a;) = 0} is infinite and (Va;)(3a;' > x)[VM(/[*']) €

71}.

Case 2: For some stage s, / gets completely defined in stage s.

Refinements of Inductive Inference by Popperian and Reliable Machines 37

Let s be such that, for all but finitely many x, f(x) gets defined in stage
s. Now by construction <pet — f 6 C. But by the diagonalization in
step 3.1 (which must happen infinitely often, since complement^ ,) is
infinite), for all w > xs, ^Mf/M) ^* I-

From the above cases it follows that C £ P^-Bc*.

Corollary 4. TZ £ P^Bc* .

As a Corollary to Theorems 25 and 27 below, we have

Corollary 5. P^Ex? - TEx -t. 0.

A slight modification to the proof of Theorem 9 can be used to show that

Theorem 18. P ^ E X Q " C TEX"?, ' , for n' > L ^ - J .

T h e o r e m 19. For all n, P ^ B c n + 1 - Bc n -. 0.

P r o o f . Fix n. Let Mo, M i , . . . denote a recursive sequence of inductive inference
machines such that Bc n = {C | (3i)[C C Bcn(M;)]} (clearly, such recursive sequence
of machines exist [20]). In [8, 9] a recursive function p is constructed such that, for
each i, the following three conditions are satisfied.

(A) {3j)[<pp((ij)) is total].

(B) (Vj, k | j < k)[domam(<pp{{iik))) = 0 V domain(^p ((i j))) C domain(v?p((i,fc)))].

(C) {/ € 11 | /(0) = i A (Vj)[card({* | <Pp({i,m(x)i # /(*)}) < n + 1]} £
Bcn(Mi).

Let C, = {/ 6 U | /(0) = i A (V;.)[card({* | ^« . , ; » (*) J # /(*)}) < « + Ill-

Note that conditions (A) and (B) imply that, for each i,

[(V k)[doma,m(<pp({iik))) = 0 V <pP((i,k)) is total] A

[card({fc | dom&in(<pp{{ik))) -/ 0}) < oo -> yp((i,max({fc|domain(¥,p{„t))^0})}) is total

Thus, for all / ,

/ g C. => (v m)[y>p(i>max({fc<m|*i,(<jifc))(o)<m})) = " + 1 /] •

We take C — UieAr^-i- By condition (C) above C £ Be11. Now define M as
follows.

M(/[0]) = 0. M (/ [/ + 1]) = p((/(0),max({j < I \ *P«/(o),;»(0) < .})»• It is
easy to verify that M is *-Popperian on T and C G Bc n + 1 (M) . •

A proof similar to that of Theorem 19 can be used to show that

38 J. CASE, S. JAIN AND S.NGO MANGUELLE

T h e o r e m 20. P f B c - Ex* jL 0.

The following theorem was obtained in collaboration with Chen.

T h e o r e m 2 1 . 7 lGP*jBc* .

P r o o f . Define M as follows. M(/[n]) = i such that <pi is defined as follows.

Begin <pi on input y

Go to stage 0.

Begin stage s
Let S = {j < n | (\/x < n)[<S>j(x) <y + s A <Pj(x) = f(x)]}.
if S = 0, t hen go to stage s + 1
else

if $min(S)(y) < «, t h e n output ^min(S)(y)
else go to stage s + 1.
endif

endif

End stage s

End

Now suppose f e l l . Let p = min({j | <fj = /})• Let / > p be such that
(Vj < p)(3a; < l)[<pj(x) ^ /(a:)]. Now consider V?M(/[t])> f o r * > '• U i s e a s y t o

see that <PM(f[t]) i s t o t a i - L e t *' = ma,x({^p(x) \ x < t}). Now, for all y > t',
^M(/[t])(y) = /(y)- T h u s > M P^B^-identifies ft. D

T h e o r e m 22. For each m, P^Exg - P*rBcm ^ 0.

P r o o f . Fix m. Let M 0 , M i , . . . be a recursive enumeration of IIMs such that
P*rBcm = {C | (3i)[C C P ^ B c m (M ,)] } .

Without loss of generality, we assume that, $ is such that, for each j , x, $j(x) >
1. Let cumcomp(», i) = Ey<x$i(y). Note that, given i,x,z, it can be effectively

determined if cumcomp(i, x) > z.
We will give recursive functions p (of one argument) and g (of three arguments)

such that, for each e, the following properties hold.

(A) <pp(e)(e) = 1 and, for each x < e, <pp(e)(x) = 0.
(B) g is a monotone increasing function in its third argument.
(C) (Vj)(V+1s > max({e,2j}))[(3y < x){<pj(y)i ± <pp(e)(y)l] V [%{e)(x) <
g(e, x, cumcomp(i, #))]].
(D) <pv(e) is either total or card({a; | <pp(e)(x)]}) = oo.
(E) M e is *-Popperian onT=) - [<pp(e) £ % A <pp(e) £ Bc m (M e)] .

Let C = {<pp(e) | <pp[e) £ K}.
We will construct g and p as above later. First we show that C € P ^ E X Q .

Refinements of Inductive Inference by Popperi'an and Reliable Machines 39

Define M as follows. Let p0 be such that (Vx)[tpPo(x) = 0].

?, if (V* < n)[/(z) = 0];
p(e), if e < n A /(e) = 1 A (V* < e)[f(x) = 0] A

-i(3x < n)[%{e)(x) < n A ¥>p(e)(z) ^ /(*)] A
M (/ M) = { - | (3 i<n) (3 .c 0 , . . . , a ; j + 1 | max({e,2j})<x0 < xx < .. .<xj+1 < n)

[(Vy < * i + i) [* i (y) < n A ^ (y) = /(y)] A
(Vr < j + l)[$p(e)(a;r) > g(e,xr,cumcomp(j,xr))}];

p0, otherwise.

It is easy to see that M is *-Popperian onTZ (using properties of p and g discussed
above) and Ex0-identifies each / £ C. Moreover by clause (E), in the properties of
p and g mentioned above, C $ P^-Bcm .

We now proceed to construct p and g as claimed above, p and. g are constructed
by implicit use of operator recursion theorem [7]. For a given e, we describe below
<pp{e) and g(e, •, •) in stages. Let <pp(e)(x) = 0, for x < e. Let <pp{e)(e) = 1. Let <p'p{e^
denote the finite portion of <pP(e) which is defined before stage s. Let cancel = 0.
Go to stage 0.

Begin stage s

1. For t<s, let g(e,s,t) = t.

2. For x < s, such that <pp{e)(x) has been defined till now, let g(e, x, s) =

= g(e, x, s - 1) + 1 (if « = 0, then let g(e, 0,0) = 0).
3. for x = 0 to s do

3.1. if x <$. domain(^p(e)) then
3.2. Let X = {j | [j £ cancel] A x > max({e, 2j}) A cumcomp(j, x) < s).
3.3. If X -- 0 then

3.4. Let j = min(X).
3.5. Let <pp{c)(x) = l - 9j(x),
3.6. Let cancel = cancel U {j}.
3.7. Letg(e,x,s) = %{e)(x)+[.
endif

endif
endfor

4. Let / be the 0-extension of ^ p (e) defined till now.

5. if there exist I, x0,X\,..., xm such that the following three conditions are satis­
fied.

(a) I = XQ < x\ < x2 < •.. < xm < s.
(b) For r < m, <pp{e)(xr) has not been defined till now.

(c) <*>M(/[fl)(a;'-) ^ s> f o r r < m -
then

5.1. For x < I such that <pP(e) has not been defined till now
let <pp(e)(x) = 0, and
g(e,x,s) = $p(e)(-c) + s.

40 J. CASE, S. JAIN AND S.NGO MANGUELLE

5.2. For r < ro

let <Pp(e)(Xr) = 1 - <PM(f[l])(X>-)' a n d

g(e,xr,s) = $p(e)(xr) + s.

endif
For each x < s, such that <PP(e) has not been defined till now, let g(e, x, s) = s.

Go to stage s + 1
End stage s

We now show that g and p satisfy the properties (A)-(E) claimed above. Proper­
ties (A) and (B) are immediate from the construction. For property (C) note that,
for each j and x > max({e,2j})i if cumcomp(j, x) < s and -I(3J/ < x)[ipp(e)(y) [^
ifj(y)i], then j G X — cancel at step 3.2 in the for loop iteration (at step 3), for x, in
stage s. But j can be in X — cancel at step 3.2 for at most j + l of the x's. Thus (C)
holds. If M e is *-Popperian on T, then the if clause at step 5, succeeds for infinitely
many /. Thus <pp(e) is total. Thus (E) holds. If <pp(e) is not total, then the if clause
at step 5 succeeds for only finitely many /. But then <pp(e) must diverge on infinitely
many inputs since <pP(e) can be defined on at most j inputs < max({e,2j}) due to
step 3. Thus (D) holds. •

5. PREDICTION PARADIGMS

Definition 18. A prediction machine is an algorithmic device which computes a
partial mapping from INIT into N.

We let M, with or without decorations, range over prediction machines.

Definition 19. [1, 5]
(a) M NV-identifies a function / (written: / G NV(M)) iff [(i(r)[M(cr)i] A

" (V n)[M(f[n]) = /(»)]].
(b) NV = {C | (3M)[C C NV(7W)]}.

Definition 20. [3]
(a) M NV'-identifies a function / (written: / G NV'(A4)) iff [(Vn)[Af(/[n])}] A

(V n)[M(f[n]) = /(«)]].
(b) N V = {C | (3M)[C C NV'(A4)]}.

Definition 21. [22]

(a) M NV'-identifies a function / (written: / G NV"(.M)) iff (V n)[M(f[n]) =

/(»)]•
(b) N V " = {C | (3M)[C C NV"(M)]} .

6. RELATING PREDICTION CLASSES WITH IDENTIFICATION CLASSES

The Theorem below was first pointed out to us by Jan van Leeuwen. It has been
independently noted by Barzdin.

Refinements of Inductive Inference by Popperian and Reliable Machines 41

T h e o r e m 23. NV = PEx .

P r o o f . Suppose C € P E x and C ^ 0- Let g be a recursive function such that
C C {<pg(i) | i G N} C 7Z (by Theorem 2 such a g exists). Define a predicting machine
M as follows. Let pmin(/[/]) = min({/} U {i < I \ (Vz < l)[pg{i)(x) = f(x)]}).
Let M(f[l]) = *Pg(pm\n(f[i]))(Q- It is e a s y to s e e that M NV-identifies C. Thus
P E x C NV.

Suppose M NV-identifies C. Let g be a recursive function such that, for all / , /
and*< n _ | / W , i f*< / ;

<Pi{M)\.x) ~ \ M(tpg(f[,])[x]), otherwise.
Now suppose M NV-identifies / . Let / be such that, for all x > /, M(f[x]) =

f(x). Then <p>g(s[i]) ~ /• T h u s N V (X) C {^(/[j]) | / €K A / <E N}. It follows by
Theorem 2 that NV(yW) 6 P E x . O

Theorem 24. [22] N V " = Be.

P r o o f . Suppose M is given. Without loss generality assume that M is such
that, for all <r, M(a) ^ ? . Define M as follows. M(f[l]) = <PM(f[i])(^- ** is e a s y t o

see that Bc(M) C NV"(M).
Suppose M is given. Let g be a recursive function such that for all / , / and x,

, „) _ / / » . i f * < ' ;

<PsUmx) - \M(<ps(m[x]), otherwise.

Let M(/[/]) = g(f[l]). It is easy to see that NV"(.M) C Bc(M). •

Theo rem 25. T E x C NV' .

P r o o f . Suppose M is given. Without loss generality assume that M is such
that, for all cr, M(<r) -£?. Define M as follows. M(f[l]) = VM(/[I])(0- ^ is e a s y t o

see that TEx(M) C NV'(M). D

T h e o r e m 26. [22] NV ' C Ex.

P r o o f . Suppose M is given. We give a machine M which may diverge on
some inputs. However, for all / 6 NV'(M), there exists i such that ipi = / and

(V /)[M(/[/]) = i]. It is easy to extend [20] M to a total machine M ' which Ex-
identifies each function NV'-identified by M. Let g be a recursive function such
that for all / , / and x,

. / / («) , i f x < / ;
ftum\x) - \M(<pg(f[l])[x]), otherwise.

Let M(/[n]) be defined as follows. If (3/ < n)[M(/[/]){], then M(/[n]) diverges;
otherwise, let ra = min({x | (Vj/ | x < y < n)[M(f[y]) = f(y)]})> a n d then let
M(/[n]) = g(f[m]). It is easy to verify that M satisfies the properties claimed. Q

Traces of the trick used by Jun Tarui to prove Corollary 8 below are used in the
proof of the following theorem.

42 J. CASE, S. JAIN AND S.NGO MANGUELLE

Theorem 27. P f Ex. - N V -- 0.

P r o o f . Define Dips as follows [11]. Dips(/) = {x + 1 | f(x) > f(x + 1)}. Let

C-{f\

[Dips(/) = 0 A <pm = / A (Vx)[* / (0)(x) < f(x + 1)]] V
[Dips(/) = {n} A (V* < n - l)[$/ (o)(x) < / (x + 1)] A <pf(n) = / A (Vx >

n) [* / (n) (x) < / (x + l)]]

}

It easy to see that C € P*rExJ. We show that C & NV ' . Suppose M is given.
We construct an / such that / 0 NV'(A^). By implicit use of Kleene's recursion
theorem there exists an e such that the (partial) function <pe may be described as
follows.

fe , ifx = 0;
fe(x) - | M ^ x _ lj)(at) + <pe(x - 1) + $ e (x - 1) + 1, otherwise.

Now consider the following cases.
Case 1: <pe is total.

In this case clearly, <pe € C and M does not NV'-identify <pe.

Case 2: <pe is not total.

Let xu be the least x such that <pe(x) is not defined. By implicit use of
recursion theorem there exists an e' such that the following holds.

(
<pe(x), i f x < x „ ;

*«(x„ - 1) + e' + <pe(xu - 1) + 1, ifx = xu;
e', ifx = x„ + l;
1 + <*v(x — 1) + Ve'(x — 1), otherwise.

It is easy to see that <pe> € C. Also, since M(<pe>[xu])1, <pe> £ NV'(M).
From the above cases it follows that C £ N V D

Since TEx C NV' , from Theorems 10 and 11 we have the following corollaries.

Corollary 6. N V - Ex*, ^ 0.

Corollary 7. N V - \Jm P^Bc"1 ^ 0.

Theorem 28 . N V - P*rBc* ^ 0.

P r o o f . Suppose q is such that Wq is a simple set [27]. Let

Refinements of Inductive Inference by Popperian and Reliable Machines 43

C = {/ 6 V. | The following two conditions are satisfied.

1. {ar | /(3ar) = 0} C complement^ ,) ;

(* Note that this implies {x | /(3a;) = 0} is finite. *)

2. For y = max({ar | /(3ar) = 0}) and e = f(3y + 1),

<Pe = f A
(Vte < y | f(3w) = 0)[domain(v?/(3w+i)) D {ar | a: < min({3u/ + 2 \w' >

w A f(Zw') = 0})}].

}

It is easy to see that C E NV ' . The diagonalization just below is a modification
of the diagonalization in the proof of Theorem 17. Suppose M is given. Then we
construct an / such that one of the following two properties is satisfied.

(a) {ar | /(3a:) = 0} is infinite and (Var)(3ar' > ar)fc>M(/[*']) <£ %\.
(b) / € C a n d / £ B c * (M) .

It will immediately follow that C £ P*rBc*.
Without loss of generality we assume that M is such that, for all cr, M(<r) ^ ? .
Now we proceed to construct an / as claimed above. We construct / in stages.

x, denotes the least x, if any, such that /(ar) has not been defined in stages < s. x,,
if it exists, will be a multiple of 3. Note that / constructed may not be recursive.
Execute stages 0, 1 ,2 ,

Begin stage s

If / gets totally defined by stages < s, then this stage does not do anything;
otherwise following steps are executed.

0. By implicit use of Kleene's recursion theorem there exists an e. such that the
(partial) function <pe, may be defined as follows.

1. For x < ar,, let <pe,(x) = /(ar).

2. Let /(ar.) = ^es(ar,) = 0, /(ar, + l) = <pe,(x, + \) = e„ f(x,+2) = <pe,(x,+2) =
l+max({$e,(ar) \x<x, + l}).

Let <pe.(x,+Z) = 1, <pe.(x,+4) = 0, <pe.(x,+h) = l+max({$ e . (z) | ar < x,+4}).
3. for y = 1 + (x./3) to oo do

if (Vu; | x, < w < 3 t /) [y M (^ > H) (3 t / + 3){] V j £ f , then
if m a x ({ $ M (^ H) (3 y + 3) | x, < w < 3t/}) < $,(t/) then
3.1. Let y>'„(3« + 3) = l + max({ ¥ 3 M (^ i [u ;]) (3 t /+3) | x, <

w < 3y» .
else

Le t^„ (3y + 3) = 1.
endif
Let <pe,(Zy + 4) = 0.
Let <pe. (3t/ + 5) = 1 + max({$ e , (x) | ar < 3y + 5}).
Let /(3y + ar) = <pe,(Zy + ar), for ar < 2.

44 J. CASE, S. JAIN AND S.NGO MANGUELLE

else <pts does not get defined anymore.

endif

endfor

End stage s

We now consider the following cases.
Case 1: Infinitely many stages are needed to define / .

In this case clearly, {x | /(3a;) = 0} is infinite and (Vx)(3x' > i)[PM(/[i']) ^
%].

Case 2: For some stage s, / gets completely defined in stage s.

Let s be such that, for all but, finitely many x, f(x) gets defined in stage
s. Now by construction <pe> = f G C. But by the diagonalization in
step 3.1 (which must happen infinitely often, since complement(W^) is
infinite), for all w > xs, VM(/M) ^* /•

From the above cases it follows that C <£ P*r-Bc*. •

Corollary 8. (Jun Tarui) N V ' - T E x -£ 0.

7. RELIABLE FUNCTION IDENTIFICATION

Definition 22. [5, 19] An IIM is Ex!1-reliable on C just in case (V/ G C)[M(f)\ =>
<Pyi(,\ =a /] • We say that M is reliable on C if it is Ex-reliable on C.

Definition 23.
(a) We say that M RcEx.l-tdentifies f (written / G RcExj(M)) just in case M

is Exa-reliable on C and M Ex^-identifies / .

(b) RcEx? = {S | (3M)[S C RcEx?(M)]}.

In this paper, regarding reliable identification, we will be interested only in the
classes R ^ E x " and R r E x j .

Intuitively a machine is reliable if it doesn't converge on functions it fails to iden­
tify. [5] gives a characterization of R^Ex-identification. In the proofs of Theorem 22
above and Theorem 41 below we employ some the ideas behind this characterization
from [5].

Propos i t ion 3. R r E x £ C RTCEx£ C Ex£.

8. RELATING POPPERIAN CLASSES WITH RELIABLE CLASSES

In [14, 15] it was shown that RT CEx"+ 1 - Ex n ^ 0. We extend the theorem to the
following.

Refinements of Inductive Inference by Popperian and Reliable Machines 45

Theorem 29. For all n, R r E x n + 1 - Ex n -- 0.

P r o o f . In [9, 8] a recursive function p was constructed such that, for each i,
<PP(i)(0) = i, card({x | <pp(i)(x)]}) < n + 1, and {/ | (3i)[<pp(i) C /]} £ Ex n . It is
easy to see that, for p as claimed above, {/ | (3i)[fP(i) C /]} G R r E x n + 1 . D

Theo rem 30. For all n, R r E x n + 1 - Ex* ^ 0.

P r o o f . Let Cn = {/ | card({x | f(x) -4 f(x + 1)}) < n + 1}. It is easy to see
that Cn G R r E x n + i . It was shown in [11] that Cn <$. E x n . •

T h e o r e m 31 . PJEx"1 C Re Ex™', where n > L-$j.-J-

P r o o f . Proof of Theorem 9 can be easily adapted to prove the above. We leave
the details to the reader. •

T h e o r e m 32. PEx*, - R^Ex* ^ 0.

P r o o f . Let C = {/ | (V x)[f(x) = 0]}. Clearly, / G PEx*,. Suppose M is given,
which is Ex*-reliable on U and Ex*-identifies C. Since 11 g Ex, there exists a <x such
that mindchange(M,cr) > n. Let / be an extension of a such that (V x)[f(x) = 0].
Clearly, then / £ R ^ E x ^ M) . It follows that C <£ R^Ex* . •

T h e o r e m 33. P*.Ex C Re Ex.

P r o o f (sketch). Suppose M is given, which is *-Popperian on C. Define, infor­
mally an M' , which, on any input function / , outputs a program, which patches
the convergent errors, if any, of the last program output by M on / . It is easy to
see M ' as described above will be reliable on C and Ex-identifies each function Ex
identified by M. Q

T h e o r e m 34. PEx? - R K E x n ^ 0.

P r o o f . Fix n. Let C = {/ € STEP0(/i + 2) | max(range(/)) = n + 2} U {Xx.l}.
Clearly, C G PEx? . Suppose M, a Ex*-reliable machine on 11, is given such that
C C Ex*(M). Let j C Xx.l be such that M(y) ^ ? . Let INITSTEP(fc) = {/[m] |
/ G STEP°(^)}. The theorem now follows using the following claim.

Cla im 3. (VAr > 0, <r G INITSTEP(fc) | j C a)(3r G INITSTEP(Ar) \<TCT)
[mindchange(M, r) > n V <Py[,T) =* Xx.k].

P r o o f . Suppose a, k is given. Let / be such that, for all x > \<r\,f(x) = k.
Now there exists an / > \<r\, such that mindchange(/[/], r) > n or VM(/[/]) = * ^x^
(otherwise M is not Ex*-reliable on 11). Since /[/] G INITSTEP(Ar), the claim
follows. •(Claim 3 and Theorem 34)

46 J. CASE, S. JAIN AND S.NGO MANGUELLE

T h e o r e m 35. RcEx° C P*,Ex°.

P r o o f . Suppose M is given. Define M ' as follows. Let po be a program such
that (Vx)[<pp0(x) = 0].

M'(f[l]) = (M 0*M) ' i f mindchange(M, /[.]) < n;
\ p o , otherwise.

It is easy to see that Ex° (M) C Ex°(M') . Moreover if M is reliable on / , then M '
is *-Popperian on / . D

Theo rem 36. TExg - R^Ex* ^ 0.

P r o o f . First we prove the following claim.

Claim 4. If M is Ex*-reliable on 11, then for all a such that M(a) ^ ? , there exists
a r D a such that M(<r) ^ M(r) .

P r o o f . Suppose otherwise. Then for all / such that a C / , M (/) = M(<r). This
along with Ex*-reliability of M on 11 implies that (V/ G ~R \ a C /) [/ =* <PM(<T)}-
This is clearly false. A contradiction. D(Claim 4)

Now let C = {/ | <£>/(o) = / } . Clearly, C e TEx° . Suppose by way of contradiction
that M R7*Ex*-identifies C. Then by the implicit use of Kleene's recursion theorem
there exists an e such that the (partial) function <pe may be described as follows.
Let <pe(0) = e. Let xs denote the least x such that <pe(x) has not been defined before
stage s. Go to stage s.

Begin stage s

if M(y>e [*,])=?
then

let <pe(xs) = 0. Go to stage s + 1.
endif
Search for an extension r of <pe[xs] such that M(<pe[xs]) ^ M(r) .
If and when such a r is found,

for x such that xs < x < |r | , let <pe(x) = y such that (x, y) € r.

Go to stage s + 1.

End stage s

Now consider the following cases.
Case 1: All stages terminate.

In this case clearly <pe is total and a member of C. Moreover, M(<pe)\-

Case 2: Some stage s does not terminate.

In this case, by Claim 4, M is not Ex*-reliable on It.

From the above cases we have that C <£ R-^Ex*. D

Refinements of Inductive Inference by Popperian and Reliable Machines 47

T h e o r e m 37. R r E x 0 - P E x -t 0.

P r o o f . Let C = {/ | ipm = / A (Var)[*/(0)(*) < / (« + 1)]}- Clearly, C €
R r E x ° . Suppose M is given. Without loss of generality assume that, for all a,
M(tr) 7^?. By the implicit use of Kleene's recursion theorem there exists an e such
that the (partial) function <pe may be defined as follows.

fe, if X = 0;
M *) - \ l + * . (* - 1) + ¥>M(„.[-])(-0. otherwise.

Now if M is Popperian, then ipe is (a) total, (b) a member of C, and (c) not
Ex-identified by M. D

T h e o r e m 38. R r E x ? - NV ' -* 0.

P r o o f . Let C be as defined in the proof of Theorem 27. It is easy to see that
C e R T E x ? . D

T h e o r e m 39. For all n, RcEx* C P*Bc.

P r o o f . Fix n, C- Suppose M, Ex*-reliable on C, is given. Define M' as follows.
Let patch be a recursive function such that, for all i, f, I and x,

, . / / (*) , i f x < / ;
Vp-tch(../M)(«) = (w (_) i o t h e r w i s e

Let p0 be such that <pPo(x) = 0, for all x.

(? , i fM(/ [/])=? ;
M'(/[/]) = { Po, if mindchange(M,/[/]) > n;

[patch(M(/[/]) , /[/]) , otherwise.

It is easy to see that M ' is *-Popperian on C and Ex* (M) C Bc(M') . D

T h e o r e m 40. R ^ E X Q - P f Be* ^ 0.

P r o o f . Let q be such that Wq is a simple set. Let M o , M i , . . . be a recursive
enumeration of the inductive inference machines such that

for all i, <r, M,-(<r) ^ ? , and
P f Be* = {C | (3i)[C C P f Bc*(M,)]}.

Clearly, such recursive enumerations exist.
The proof of this theorem extends the idea used in the proof of Theorem 16. We

will describe a recursive sequence of (partial) recursive functions, <PP(.). Then using
these (partial) recursive functions, we will describe a sequence of total functions
ho, hi, h^, ••• . hi may or may not be recursive. However, if M,- is *-Popperian on
T, then hi will be recursive. We will let C — {hi \ hi € 11} to witness the theorem.

We now proceed to describe the (partial) recursive function <PP(e) for arbitrary e.

J. CASE, S. JAIN AND S.NGO MANGUELLE

We assume without loss of generality that 4> is such that, for all i and x, <*>.(.") > x.
Let <pp(e)(0) = e. Let <PPre) denote the part of <PP(e) defined before stage s. For
each s, let x° — 0 and, for i > 0, x\ denote i-th. member (in increasing order) of
complement(domain(^>e)). Let gs denote the 0-extension of <Ppie)- Let valjj be the
recursive function such that, for all x, valo(x) ='•". Let t = 1. Intuitively t denotes
a time variable. The use of this time variable on outputs of <pP(e) will allow us to
determine, effectively in e,x and y, whether <pp(e)(x) = y+\. Go to stage 0.

Begin stage s

1. for i = (0,0) to oo do
Let j , k be such that i = (j, k).
Lett = t + \.
if (Vu> | x{ <w< x{ + 1)[<1>MAgt[w])(x

j+1) < k] then
Go to step 2.

else if val^(i + 1) 6 Wq>k then
Go to step 3.

endif
endfor

2. Let <pp(e)(x{+1) = t + 1 + m a x ({ m (j i [w]) (l > + 1) | x{ < w < x{+1}).

Go to step 4. •

3. Let ipKe)(x{+1) = t + I.

4. Let val*+1(x) = val,(a;), for x < j .

Let val*+](z) = \afs(x) + 1, for * > j -

Go to stage s + 1.

End stage s

Note that it can be determined, effectively in e, x and y, whether tpp(e)(x) = y+1.
We now proceed to define he.
Consider the following cases.

Case 1: For all but finitely many i, xl\.

In this case clearly <pP(e) converges on all but finitely many inputs. Let
/ie be the 0-extension of <pp(e)- Let i; be the largest i such that x'[. Let
s be such that x\l = x". Now for all s1 > s such that val^,(i; + 1) 0
Wq, (Vw | *<< < w < * ' ;+ 1)bp (e)K'+ 1)j -- <PM(gMM''+1W (by the
diagonalization at step 2 in some stage s" > s'; this diagonalization must
happen since xi,+1\). Since, for infinitely many s', valj,(i; + 1) $ Wq,
we have that M e does not Bc*-identify he.

Case 2: For each i, x%[.

In this case, it is easy to see that M e cannot be *-Popperian on T. Let
he be the 0-extension of <pP(e)- We claim that he cannot be recursive.
Suppose otherwise. Then let 0 < y\ < y? < ... be all the inputs > 0 on

Refinements of Inductive Inference by Popperian and Reliable Machines 49

which he is 0. Now consider the set Le = {val*(j) | j > 0 A r j = yj}.
Clearly, Le is recursively enumerable, infinite and C complement(W?).
But this is not possible, since Wq is a simple set. Thus he cannot be
recursive.

Now consider the class C = {he \ he £ 11}. By the analysis above C £ P*rBc*.
We now informally describe the behavior of a machine M, which is Ex*-reliable
on V.., and Ex*,-identifies C. M on input function / first outputs p(/(0)). Then it
searches for an x such that

(a) Vp(/(o))(i)l # / (*) o r

(b) f(x) > 0 and Vp(/(0))(*) ? / (*)•

Note that by the comment at the end of construction above, (b) above can be
effectively tested. If and when such an x is found M, then, proceeds to diverge on
the function / . It is easy to see that M is Ex*-reliable on V, and Exn-identifies C. •

Lemma 1. [5] Suppose M is reliable on T. Then there exists a recursive h such

that (V/ e Ex(M) | range(/) C {0, l})(3j | Vj = /)(V x)[*j(x) < h(x)}.

Theorem 4 1 . P^Exo - R T E x ^ 0.

P roof . The idea is to construct a class consisting of arbitrarily complex 0-1 func­
tions which can be P^Ex-identified, and then use Lemma 1 for the diagonalization.

We will simultaneously define recursive functions g and p such that, for each e,
the following three conditions are satisfied.

(a) ¥p(e)(e) = 1 and, for x < e, <pp(e)(x) = 0.
(b) domain(^p(e)) is either N or an initial segment of N and range(</?p(e)) C

{0,1}-
(c) If <pe is total, then

(c.l) ¥?P(e) is total,
(c.2) (Vj)(V'+1* > max({e, j}))[(3y < x)[<pj(y) -<• <pp{e)(y)} V

[(J>p(e)(^')<ff(e,a;,<I)j(a'))]]>and

(C.3) (Vj | <pj = Vp(e))(V x)[*j(x) > <pe(x)}.

Now let C = {fp(e) I fe is total}. We will construct g and p as above later. First
we show that C G P*^Exo-

Define M as follows. Let p0 be such that (Vx')[y>Po(x) = 0].

?, if (Vz < n)[f(x) = 0];
p(e), if e < n A /(e) = 1 A (Vz < e)[/(x) = 0] A

- (3 * < n)[%(e)(x) < n A <pp(e)(x) 7- /(*)] A
M(/[n]) = !, ->(3j < n)(3x0,..., xj+l | max({e, j}) < x0 < xx < ... < xj + l < n)

[(My < xj + l)[^(y) < n A Vi(y) = f(y)] A
(Vr < j + l) [* p (0 (x r) > g(e, .--,*,•(*..))]];

pn, otherwise.

50 J- CASE, S. JAIN AND S.NGO MANGUELLE

It is easy to see that M is *-Popperian on 1Z (using properties of p and g discussed
above) and Exo-identifies each / _ C.

Also by Lemma 1 and clause (c.3) in the property of p and g given above we have
that C <£ R r E x .

We now proceed to construct p and g as claimed above, p and g are constructed
by implicit use of parametric recursion theorem. For given e and x, we describe
in stages below <pp(e)(x) and g(e,x, •). (it will be easy to see that the definition is
effective in e and _). The construction also maintains a cancellation list. cancel_
denotes the set of programs which have been diagonalized against on inputs < x.
For x < e, let <pp(e)(x) = 0. Let <pp(e)(e) = 1. Let cancele = 0. Go to r.tage 0.

<pp(e)(x) and g(e,x,-)

Begin stage s
1. if x < e or s = 0 or <be(x) > s or <&v(e)(x - 1) > s then

Let g(e, x,s) = s.
Go to stage s + 1.

endif
2. (* <pe is defined on all inputs < x. *)

Let X = {;' | j < x A <!>_ (x) < max({s, <pe(x)})} - cancelx_i.
3. if <pp(e)(x) has been defined before stage s then let g(e,x,s) = g(e,x,s —

1) + 1.
else if X = 0 t h e n
3+ let ipp('e)(x) = 0, and g(e, x, s) = <_p(e)(_) + 1.
else
3.2 let <pp(e)(x - I - <pmm(x)(x), and g(e,x,s) = $p(e)(x) + 1.

Let cancel_+i = cancels U{min(X)}.
endif

4. Go to stage s + 1.
End stage s

End <Pp(e)(x) and g(e, x, •)

We now show that <pp(e) satisfies the properties claimed.
(a), (b) immediate from construction.
(c) Suppose tpe is total. Clearly, <pP(e) is total, and thus (c.l) is satisfied. Also

if j is such that (3 x)[<bj(x) < <pe(x)], then, by the diagonalization at step 3.2,
ipj 7- <pp(e). Thus (c.3) is satisfied. For (c.2), suppose that x > e is such that
<pp(e)(x) get defined at stage s. Then, for j < x, either $j(~) > s (and thus
$P(e)(x) < g(e,x,$j(x))), or (3y < x)[<pp(e)(y) ^ <pj(x)] or j G X - cancel^-i at
stage s. But j can be in X — cancelx_i in some stage s, for at most j + 1 x's greater
than j . Thus (c.2) holds. •

Theorem 42 . P*jEx0 - R r Ex* ^ 0 .

P r o o f . For / G 11 define / ' as follows. f((x,y)) = f(y). Let C be as in'the
proof of Theorem 41. Let C = {/' | / G C}. Clearly, C G P^Exo- Moreover
C G RrEx* t>C € R r E x . But since C £ R T E x , we have that C & RrEx*. •

Refinements of Inductive Inference by Popperian and Reliable Machines 51

C o r o l l a r y 9. R T J E X 0 - R r E x * ^ 0.

T h e o r e m 4 3 . R r E x - P f Be* - . 0.

P r o o f . Note t h a t C as defined in T h e o r e m 17 is a member of R r E x . T h e

theorem follows. D

As a corollary to T h e o r e m 22 we have

C o r o l l a r y 1 0 . For each m, R ^ E X Q - P f B c m ^ 0.

T h e results ment ioned in this paper resolve all the questions regarding rela t ion­
ship between different learning classes in t roduced in this paper , except for the open
problems ment ioned below.

O p e n Q u e s t i o n 1. For C G {H, T}, R e E x - P ^ E x ^ 0?

O p e n Q u e s t i o n 2 . For C G {H,T}, a and m, R c E x a - P ^ B c m ^ 0?

(Received June 2, 1992.)

R E F E R E N C E S

[1] J .M. Barzdin: Prognostication of automata and functions. Inform. Process. 1 (1971),
81-84.

[2] J .M. Barzdin: Two theorems on the limiting synthesis of functions (in Russian). In:
Theory of Algorithms and Programs, Latvian State University, Riga, 2 /0(1974) , pp.
82-88.

[3] J .M. Barzdin and R. Freivalds: On the prediction of general recursive functions.
Soviet Math. Dokl. 13 (1972), 1224-1228.

[4] J .M. Barzdin and R. Freivalds: Prediction and limiting synthesis of recursively enu­
merable classes of functions. Latvijas Valsts Univ. Zimatm. Raksti 210 (1974), 101-
111.

[5] L. Blum and M. Blum: Toward a mathematical theory of inductive inference. Inform.
and Control 2S(1975), 125-155.

[6] M. Blum: A machine independent theory of the complexity of recursive functions.
J. Assoc. Comput. Mach. 14 (1967), 322-336.

[7] J. Case: Periodicity in generations of automata. Math. Systems Theory 8 (1974),
15-32.

[8] J. Case, K . J . Chen and S. Jain: Strong separation of learning classes. J. Exper. and
Theoret. Artif. Intell. 4 (1992), 281-293.

[9] J. Case, K. J. Chen and S. Jain: Strong separation of learning classes. In: Proc.
Third International Workshop on Analogical and Inductive Inference, Dagstuhl Castle,
Germany, Oct. 1992.

[10] J. Case and S. Ngo Manguelle: Refinements of inductive inference by Popperian
machines. Technical Report 152, SUNY/Buffalo 1979.

[11] J. Case and C. Smith: Comparison of identification criteria for machine inductive
inference. Theoret. Comput. Sci. 25 (1983), 193-220.

[12] R. Daley: On the error correcting power of pluralism in BC-type inductive inference.
Theoret. Comput. Sci. 24 (1983), 95-104.

52 J. CASE, S. JAIN AND S.NGO MANGUELLE

[13] R.P.Daley: Inductive inference hierarchies: Probabilistic vs pluralistic. Lecture Notes
in Computer Science 215 (1986), 73-82.

[14] M. Fulk: A Study of Inductive Inference machines. PhD thesis, SUNY at Buffalo
1985.

[15] M. Fulk: Saving the phenomenon: Requirements that inductive machines not contra­
dict known data. Inform, and Comput. 7.9(1988), 193-209.

[16] E. M. Cold: Language identification in the limit. Inform, and Control 10 (1067),
447-474.

[17] M. Machtey and P. Young: An Introduction to the General Theory of Algorithms.
North Holland, New York 1978.

[18] Y. Marcoux: Composition is almost as good ass-1-1. In: Proc. Structure in Complexity
Theory-Fourth Annual Conference. IEEE Computer Society Press, 1989.

[19] E. Minicozzi: Some natural properties of strong identification in inductive inference.
Theoret. Comput. Sci. (1976), 345-360.

[20] D. Osherson, M. Stob and S. Weinstein: Systems that Learn, An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge,
Mass. 1986.

[21] L. Pitt and C. Smith: Probability and plurality for aggregations of learning machines.
Inform, and Comput. 77(1988), 77-92.

[22] K. Podnieks: Comparing various concepts of function prediction. Part I. Theory of
Algorithms and Programs 2/0(1974) , 68-81.

[23] K. Popper: The Logic of Scientific Discovery. Second edition. Harper Torch Books,
New York 1968.

[24] G. Riccardi: The Independence of Control Structures in Abstract Programming Sys­
tems. PhD thesis, SUNY at Buffalo 1980.

[25] G. Riccardi: The independence of control structures in abstract programming systems.
J. Comput. System Sci. 22(1981), 107-143.

[26] H. Rogers: Godel numberings of partial recursive functions. J. Symbolic Logic 23
(1958), 331-341.

[27] H. Rogers: Theory of Recursive Functions and Effective Computability. McGraw Hill,
New York 1967. Reprinted, MIT Press 1987.

[28] J. Royer: A Connotational Theory of Program Structure. (Lecture Notes in Computer
Science 273.) Springer-Verlag, Berlin 1987.

[29] C. Smith: The power of pluralism for automatic program synthesis. J. Assoc. Math.
Comput. Mach. 23(1982), 1144-1165.

[30] T. Zeugmann: A-posteriori characterizations in inductive inference of recursive func­
tions. Electron. Informationsverarb. u. Kybernetik /3(1983) , 559-594.

John Case, Department of Computer and Information Sciences, University of Delaware,

Newark, DE19716. U.S.A. e-mail: case&cis.udel.edu.

Sanjay Jain, Institute of Systems Science, National University of Singapore, Singapore

0511. Republic of Singapore, e-mail: sanjay@iss.nus.sg.

Suzanne Ngo Manguelle, P. O. Box 2412, Yaounde-Mesa. Cameroon (W. Africa).

		webmaster@dml.cz
	2012-06-06T02:47:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

