Previous |  Up |  Next

Article

References:
[1] U. Baser, N. Karcanias: An exterior algebra based characterisation of the fundamental subspaces of singular systems. In: Proceedings of 2nd IFAC Workshop on Systems Structure and Control, 1992, Prague, pp. 336-339.
[2] P. Bernhard: On singular implicit linear dynamical systems. SIAM J. Control Optim. 20 (1982), 612-633. MR 0667644 | Zbl 0491.93004
[3] F. R. Gantmacher: Theory of Matrices. Vol. 2. Chelsea, New York 1959.
[4] W. H. Greub: Multilinear Algebra. Springer Verlag, New York 1967. MR 0224623 | Zbl 0169.35302
[5] W. V. D. Hodge, P. D. Pedoe: Methods of Algebraic Geometry. Vol. 2. Cambridge University Press, Cambridge 1952. MR 0048065
[6] S. Jaffe S., N. Karcanias: Matrix pencil characterization and almost $(A,B)$-invariant subspaces. A classification of geometric concepts. Internat. J. Control 33 (1981), 51-93. MR 0607261
[7] G. Kalogeropoulos: Matrix Pencils and Linear Systems Theory. Ph.D. Thesis, Control Eng. Centre, City University, London, October 1985.
[8] N. Karcanias: Matrix pencil approach to geometric system theory. Proc. IEE 126 (1979), 585-590. MR 0536439
[9] N. Karcanias: Notes on exterior algebra and representation of exterior maps. Control Eng. Centre, Research Report, 1982.
[10] N. Karcanias, C. Giannakopoulos: Grassmann invariants, almost zeros and the determinantal zero, pole assignment problems of linear systems. Internat. J. Control 40 (1989), 673-698. MR 0774143
[11] N. Karcanias, C. Giannakopoulos: Grassmann matrices, decomposability of multivectors and the determinantal assignment problem. In: Linear Circuit Systems and Signal Processing: Theory and Applic. (C. I. Byrnes et al. eds.), North Holland 1974, pp. 307-312. MR 1031051
[12] N. Karcanias, G. E. Hayton: Generalized autonomous dynamical systems, algebraic duality and geometric theory. In: Proc. IFAC VIII Triennial World Congress, Kyoto 1981, pp. 289-294. MR 0735816
[13] N. Karcanias, G. Kalogeropoulos: Bilinear strict equivalence of matrix pencils. In: 4th IMA Int. Conference on Control Theory, Academic Press, Ed. P. A. Cook, 1985, pp. 77-86. MR 0845597 | Zbl 0585.93008
[14] N. Karcanias, G. Kalogeropoulos: Geometric theory and feedback invariants of generalized linear systems. A matrix pencil approach. Circuits Systems Signal Process. 8 (1989), 3, 375-397. MR 1015178 | Zbl 0689.93016
[15] F. Lewis: A tutorial on the geometric analysis of linear time invariant implicit systems. Automatica 28 (1992), 1, 119-138. MR 1144115 | Zbl 0745.93033
[16] J. J. Loiseau: Some geometric consideration about the Kronecker normal form. Internat. J. Control 42 (1985), 1141-1431. MR 0818345
[17] M. Malabre: More geometry about singular systems. In: Proc. 26th IEEE CDC, Los Angeles 1987.
[18] M. Marcus: Finite Dimensional Multilinear Algebra. Vol. 1, 2. Marcel Dekker, New York 1973. MR 0352112
[19] M. Marcus, H. Minc: A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston 1964. MR 0162808 | Zbl 0126.02404
[20] K. Ozčaldiran: Control of Descriptor Systems. PhD. thesis, School of Electrical Eng., Georgia Institute of Technology 1985.
[21] K. Ozčaldiran: A note on the assignment of initial and final manifolds for descriptor systems. In: Proc. of 1987 Intern. Symposium on Singular Systems, Atlanta, Georgia Tech 1987, pp. 38-39.
[22] R. Westwick: Linear transformations of Grassmann spaces III. Linear and Multilinear Algebra 2 (1974), 257-268. MR 0429961
[23] J. C. Willems: Almost invariant subspaces: An approach to high gain feedback design. IEEE Trans Automat. Control AC-26 (1981), 235-252, AC-27 (1982), 1071-1085. Zbl 0463.93020
[24] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Springer-Verlag, New York 1979. MR 0569358 | Zbl 0424.93001
Partner of
EuDML logo