Previous |  Up |  Next

Article

Keywords:
associative rings; unipotent elements
Summary:
Let $R$ be an associative ring with 1 and $R^{\times}$ the multiplicative group of invertible elements of $R$. In the paper, subgroups of $R^{\times}$ which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group.
References:
[1] Bashkirov E.L.: Linear groups that contain a root subgroup. Siberian Math. J. 37 (1996), 5 754-759. DOI 10.1007/BF02106733 | MR 1440380
[2] Bashkirov E.L.: Irreducible linear groups of degree four over a quaternion division algebra that contain a subgroup diag$(T_{3}(K,\Phi_{0}),1)$. J. Algebra 287 (2005), 2 319-350. DOI 10.1016/j.jalgebra.2004.09.006 | MR 2134148 | Zbl 1088.20030
[3] Bashkirov E.L.: Irreducible linear groups of degree four over a quaternion division algebra that contain a root subgroup. Comm. Algebra 34 (2006), 6 1931-1948. DOI 10.1080/00927870500454802 | MR 2235072 | Zbl 1110.20038
[4] Bashkirov E.L.: Completely reducible linear groups over a quaternion division algebra that contain a root subgroup. Comm. Algebra 35 (2007), 3 1019-1054. DOI 10.1080/00927870601074798 | MR 2305248 | Zbl 1118.20049
[5] Dieudonné J.: La Géométrie des Groups Classiques. Ergebnisser der Mathematik, Springer, Berlin-New York, 1997.
[6] Dixon J.D.: The Structure of Linear Groups. Van Nostrand Reinhold Company, London, 1971. Zbl 0232.20079
[7] Dye R.H.: Maximal subgroups of ${GL}_{2n}(K)$, ${SL}_{2n}(K)$, ${PGL}_{2n}(K)$ and ${PSL}_{2n}(K)$ associated with symplectic polarities. J. Algebra 66 (1980), 1 1-11. DOI 10.1016/0021-8693(80)90110-6 | MR 0591244 | Zbl 0444.20036
[8] King O.H.: On subgroups of the special linear group containing the special orthogonal group. J. Algebra 96 (1985), 1 178-193. DOI 10.1016/0021-8693(85)90045-6 | MR 0808847 | Zbl 0572.20028
[9] King O.H.: On subgroups of the special linear group containing the special unitary group. Geom. Dedicata 19 (1985), 3 297-310. MR 0815209 | Zbl 0579.20040
[10] O'Meara O.T.: Symplectic Groups. American Mathematical Society, Providence, R.I., 1978. MR 0502254 | Zbl 0383.20001
[11] Zalesskiĭ A.E., Serežkin V.N.: Linear groups generated by transvections. Izv. Akad. Nauk SSSR. Ser. Mat. 40 (1976), 1 26-49. MR 0412295
Partner of
EuDML logo