Article
Keywords:
commutative directoid; $\lambda$-lattice; pseudocomplement; boolean elements
Summary:
Directoids as a generalization of semilattices were introduced by J. Je\v{z}ek and R. Quackenbush in 1990. We modify the concept of a pseudocomplement for commutative directoids and study several basic properties: the Glivenko equivalence, the set of the so-called boolean elements and an axiomatization of these algebras.
References:
[1] Chajda I., Halaš R., Kühr J.:
Semilattice Structures. Heldermann Verlag, Lemgo (Germany), 2007, ISBN 978-3-88538-230-0.
MR 2326262
[2] Frink O.:
Pseudo-complemented semi-lattices. Duke Math. J. 29 (1962), 505-514.
MR 0140449
[4] Jones G.T.: Pseudo-complemented semi-lattices. Ph.D. Thesis, Univ. of California, Los Angeles, 1972.
[5] Snášel V.:
$\lambda$-lattices. Math. Bohem. 122 (1997), 267-272.
MR 1600648