Previous |  Up |  Next

Article

Keywords:
Moufang loop; order; nonassociative
Summary:
It has been proven by F. Leong and the first author (J. Algebra {\bf 190} (1997), 474--486) that all Moufang loops of order $p^\alpha q_1^{\beta_1}q_2^{\beta_2}\cdot \cdot \cdot q_n^{\beta_n}$ where $p$ and $q_i$ are odd primes, are associative if $p<q_1<q_2<\cdot \cdot \cdot<q_n$, and \roster \item"(i)" $\alpha\leq 3$, $\beta_i\leq 2$; or \item"(ii)" $p\geq 5$, $\alpha\leq 4$, $\beta_i\leq2$. \endroster The first author also proved that if $p$ and $q$ are distinct odd primes, then all Moufang loops of order $pq^3$ are associative if and only if $q\not\equiv 1(\text{\rm mod}\, p)$ (J. Algebra {\bf 235} (2001), 66--93). In this paper, we prove that all Moufang loops of order $p_1p_2\cdot \cdot \cdot p_nq^3$ where $p_i$ and $q$ are odd primes, are associative if $p_1<p_2<\cdot \cdot \cdot <p_n<q$, $q\not\equiv 1(\text{\rm mod}\, p_i)$, $p_i\not\equiv 1(\text{\rm mod}\, p_j)$ and the nucleus is not trivial.
References:
[1] Bruck R.H.: A Survey of Binary Systems. Springer, New York, 1971. MR 0093552 | Zbl 0141.01401
[2] Chein O.: Moufang loops of small order I. Trans. Amer. Math. Soc. 188 2 (1974), 31-51. DOI 10.1090/S0002-9947-1974-0330336-3 | MR 0330336 | Zbl 0286.20088
[3] Chein O.: Moufang loops of small order. Memoirs Amer. Math. Soc. 13 197 (1978), 1-131. MR 0466391 | Zbl 0378.20053
[4] Chein O., Rajah A.: Possible orders of nonassociative Moufang loops. Comment. Math. Univ. Carolin. 41 2 (2000), 237-244. MR 1780867 | Zbl 1038.20045
[5] Glauberman G.: On loops of odd order II. J. Algebra 8 (1968), 393-414. DOI 10.1016/0021-8693(68)90050-1 | MR 0222198 | Zbl 0155.03901
[6] Grishkov A.N., Zavarnitsine A.V.: Lagrange's Theorem for Moufang loops. Math. Proc. Cambridge Philos. Soc. 139 (2005), 41-57. DOI 10.1017/S0305004105008388 | MR 2155504 | Zbl 1091.20039
[7] Herstein I.N.: Topics in Algebra. John Wiley & Sons, Inc., New York, 1975. MR 0171801 | Zbl 0122.01301
[8] Leong F., Rajah A.: On Moufang loops of odd order $pq^2$. J. Algebra 176 (1995), 265-270. DOI 10.1006/jabr.1995.1243 | MR 1345304
[9] Leong F., Rajah A.: Moufang loops of odd order $p_1^2p_2^2\cdots p_m^2$. J. Algebra 181 (1996), 876-883. DOI 10.1006/jabr.1996.0150 | MR 1386583
[10] Leong F., Rajah A.: Moufang loops of odd order $p^4q_1\cdots q_n$. J. Algebra 184 (1996), 561-569. DOI 10.1006/jabr.1996.0274 | MR 1409228 | Zbl 0860.20054
[11] Leong F., Rajah A.: Moufang loops of odd order $p^\alpha q_1^2\cdots q_n^2r_1\cdots r_m$. J. Algebra 190 (1997), 474-486. MR 1441958 | Zbl 0874.20046
[12] Leong F., Rajah A.: Split extension in Moufang loops. Publ. Math. Debrecen 52 1-2 (1998), 33-42. MR 1603303
[13] Purtill M.: On Moufang loops of order the product of three odd primes. J. Algebra 112 (1988), 122-128. DOI 10.1016/0021-8693(88)90136-6 | MR 0921968 | Zbl 0644.20040
[14] Purtill M.: Corrigendum. J. Algebra 145 (1992), 262. DOI 10.1016/0021-8693(92)90192-O | MR 1144674 | Zbl 0742.20068
[15] Rajah A.: Moufang loops of odd order $pq^3$. J. Algebra 235 (2001), 66-93. DOI 10.1006/jabr.2000.8422 | MR 1807655 | Zbl 0973.20062
Partner of
EuDML logo