Article
Keywords:
Moufang loop; order; nonassociative
Summary:
It has been proven by F. Leong and the first author (J. Algebra {\bf 190} (1997), 474--486) that all Moufang loops of order $p^\alpha q_1^{\beta_1}q_2^{\beta_2}\cdot \cdot \cdot q_n^{\beta_n}$ where $p$ and $q_i$ are odd primes, are associative if $p<q_1<q_2<\cdot \cdot \cdot<q_n$, and \roster \item"(i)" $\alpha\leq 3$, $\beta_i\leq 2$; or \item"(ii)" $p\geq 5$, $\alpha\leq 4$, $\beta_i\leq2$. \endroster The first author also proved that if $p$ and $q$ are distinct odd primes, then all Moufang loops of order $pq^3$ are associative if and only if $q\not\equiv 1(\text{\rm mod}\, p)$ (J. Algebra {\bf 235} (2001), 66--93). In this paper, we prove that all Moufang loops of order $p_1p_2\cdot \cdot \cdot p_nq^3$ where $p_i$ and $q$ are odd primes, are associative if $p_1<p_2<\cdot \cdot \cdot <p_n<q$, $q\not\equiv 1(\text{\rm mod}\, p_i)$, $p_i\not\equiv 1(\text{\rm mod}\, p_j)$ and the nucleus is not trivial.
References:
[4] Chein O., Rajah A.:
Possible orders of nonassociative Moufang loops. Comment. Math. Univ. Carolin. 41 2 (2000), 237-244.
MR 1780867 |
Zbl 1038.20045
[11] Leong F., Rajah A.:
Moufang loops of odd order $p^\alpha q_1^2\cdots q_n^2r_1\cdots r_m$. J. Algebra 190 (1997), 474-486.
MR 1441958 |
Zbl 0874.20046
[12] Leong F., Rajah A.:
Split extension in Moufang loops. Publ. Math. Debrecen 52 1-2 (1998), 33-42.
MR 1603303