Previous |  Up |  Next

Article

Keywords:
quasigroup; ternary quasigroup; $n$-quasigroup; heterogeneous algebra; hyperidentity; modular group; conjugate; parastrophe; time reversal
Summary:
For a positive integer $n$, the usual definitions of $n$-quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin $n$-cubes, or by $2n$ identities on $n+1$ different $n$-ary operations. In this paper, a more symmetrical approach to the specification of $n$-quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.
References:
[1] Chein O. et al.: Quasigroups and Loops: Theory and Applications. Heldermann, Berlin, 1990. MR 1125806 | Zbl 0719.20036
[2] Coxeter H.S.M., Moser W.O.J.: Generators and Relations for Discrete Groups. Springer, Berlin, 1957. MR 0088489 | Zbl 0487.20023
[3] Evans T.: Homomorphisms of non-associative systems. J. London Math. Soc. 24 (1949), 254-260. DOI 10.1112/jlms/s1-24.4.254 | MR 0032664
[4] Higgins P.J.: Algebras with a scheme of operators. Math. Nachr. 27 (1963), 115-132. DOI 10.1002/mana.19630270108 | MR 0163940 | Zbl 0117.25903
[5] James I.M.: Quasigroups and topology. Math. Z. 84 (1964), 329-342. MR 0165524 | Zbl 0124.16104
[6] Lugowski H.: Grundzüge der Universellen Algebra. Teubner, Leipzig, 1976. MR 0441819 | Zbl 0485.08001
[7] Sade A.: Quasigroupes obéissant à certaines lois. Rev. Fac. Sci. Univ. Istanbul, Ser. A 22 (1957), 151-184. MR 0106253
[8] Serre, J.-P.: Cours d'Arithmétique. Presses Universitaires de France, Paris, 1970. MR 0255476 | Zbl 0432.10001
[9] Smith J.D.H.: Axiomatization of quasigroups. Discuss. Math. Gen. Algebra Appl. 27 (2007), 21-33. DOI 10.7151/dmgaa.1116 | MR 2319330 | Zbl 1135.20048
Partner of
EuDML logo