Previous |  Up |  Next

Article

Keywords:
S-weakly infinite-dimensional; countable-dimensional; compactification
Summary:
In this paper we give a characterization of a separable metrizable space having a metrizable S-weakly infinite-dimensional compactification in terms of a special metric. Moreover, we give two characterizations of a separable metrizable space having a metrizable countable-dimensional compactification.
References:
[1] Borst P.: Spaces having a weakly-infinite-dimensional compactification. Topology Appl. 21 (1985), 261-268. DOI 10.1016/0166-8641(85)90015-X | MR 0812644 | Zbl 0587.54055
[2] Borst P.: Some remarks concerning $C$-spaces. Topology Appl. 154 (2007), 665-674. MR 2280911 | Zbl 1116.54018
[3] Engelking R.: Theory of Dimensions Finite and Infinite. Heldermann Verlag, Lemgo, 1995. MR 1363947 | Zbl 0872.54002
[4] Engelking R., Pol E.: Countable-dimensional spaces: a survey. Dissertationes Math. 216 (1983). MR 0722011 | Zbl 0541.54042
[5] Engelking R., Pol R.: Compactifications of countable-dimensional and strongly countable-dimensional spaces. Proc. Amer. Math. Soc. 104 (1988), 985-987. MR 0964883 | Zbl 0691.54015
[6] Kimura T., Komoda C.: Spaces having a compactification which is a $C$-space. Topology Appl. 143 (2004), 87-92. MR 2080284 | Zbl 1055.54009
[7] Misra A.K.: Some regular Wallman $\beta X$. Indag. Math. 35 (1973), 237-242. MR 0324653 | Zbl 0258.54022
[8] Nagata J.: Modern Dimension Theory. Groningen, 1965. Zbl 0518.54002
[9] Nagami K., Roberts J.H.: A note on countable-dimensional metric spaces. Proc. Japan Acad. 41 (1965), 155-158. MR 0187204 | Zbl 0132.18601
[10] Schurle A.W.: Compactification of strongly countable-dimensional spaces. Trans. Amer. Math. Soc. 136 (1969), 25-32. MR 0234423 | Zbl 0175.19902
Partner of
EuDML logo