Article
Keywords:
compact space; first countable space; character of a point
Summary:
We define a compactum $X$ to be AB-compact if the {\it cofinality\/} of the character $\chi(x,Y)$ is countable whenever $x\in Y$ and $Y\subset X$. It is a natural open question if every AB-compactum is necessarily first countable. We strengthen several results from [Arhangel'skii and Buzyakova, {\it Convergence in compacta and linear Lindelöfness\/}, Comment. Math. Univ. Carolin. {\bf 39} (1998), no. 1, 159--166] by proving the following results. \roster \item Every AB-compactum is countably tight. \item If $\frak p = \frak c$ then every AB-compactum is Fr\`echet-Urysohn. \item If $\frak c < \aleph_\omega$ then every AB-compactum is first countable. \item The cardinality of any AB-compactum is at most $2^{< \frak c}$. \endroster
References:
[1] Arhangel'skii A.V., Buzyakova R.Z.:
Convergence in compacta and linear Lindelöfness. Comment. Math. Univ. Carolin. 39 (1998), 1 159-166.
MR 1623006 |
Zbl 0937.54022
[2] Babai L., Máté A.:
Inner set mappings on locally compact spaces. in: Topics in topology (Proc. Colloq., Keszthely, 1972), Colloq. Math. Soc. János Bolyai, Vol. 8, North-Holland, Amsterdam, 1974, pp.77-95.
MR 0379202
[4] Juhász I.:
Cardinal functions in topology - ten years later. Math. Centre Tract 123, Amsterdam, 1980.
MR 0576927
[5] Juhász I., Szentmiklóssy Z.:
Convergent free sequences in compact spaces. Proc. Amer. Math. Soc. 116 (1992), 1153-1160.
DOI 10.2307/2159502 |
MR 1137223
[6] Kunen K.:
Locally compact linearly Lindelöf spaces. Comment. Math. Univ. Carolin. 43 (2002), 1 155-158.
MR 1903314 |
Zbl 1090.54019
[7] Kunen K.:
Small locally compact linearly Lindelöf spaces. Topology Proc. 29 (2005), 1 193-198.
MR 2182928 |
Zbl 1114.54015
[8] Pearl E.:
Linearly Lindelöf problems. in: Open Problems in Topology II, E. Pearl editor, Elsevier, 2007, pp. 225-231.
MR 2367385