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Weakly infinite-dimensional compactifications

and countable-dimensional compactifications

Takashi Kimura, Chieko Komoda

Abstract. In this paper we give a characterization of a separable metrizable space having
a metrizable S-weakly infinite-dimensional compactification in terms of a special met-
ric. Moreover, we give two characterizations of a separable metrizable space having a
metrizable countable-dimensional compactification.
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1. Introduction

We assume that all spaces are separable and metrizable. By a compactification
of a space X , we mean a compact metrizable space containing X as a dense
subspace. We refer the reader to [3] for notions and terminology not explicitly
given.
Borst [2] gave a characterization of spaces having a S-weakly infinite-dimen-

sional compactification in terms of a special base. In [6], we obtained a result
concerning C-spaces, which is similar to Borst’s one.
On the other hand, in [1], Borst gave a characterization of spaces having a com-

pactification which is a C-space in terms of a special metric. In this paper we give
an alternative characterization of spaces having a S-weakly infinite-dimensional
compactification in terms of a special metric, which is similar to Borst’s one.
It is known that the class of C-spaces contains the class of countable-dimen-

sional spaces.
Next, we give a characterization of spaces having a countable-dimensional com-

pactification. The following theorem is well-known.

1.1 Theorem ([3, Theorem 7.2.21]). A space X has a countable-dimensional

compactification if and only if X has small transfinite dimension trind.

However, by using Borst’s method, we give two characterizations of spaces
having a countable-dimensional compactification.
For a collection A of subsets of a space X and for Y ⊂ X we write A|Y for

{A ∩ Y : A ∈ A},
⋃

A for
⋃

{A : A ∈ A},
⋂

A for
⋂

{A : A ∈ A} and [A]<ω for
{B : B is a finite subcollection of A}.
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We denote by (X̃, d̃) the completion of a metric space (X, d).
For a point x of a metric space (X, d) and for a positive number ε, the set

B(x; ε) = {y ∈ X : d(x, y) < ε} is called the ε-ball about x. For a set A ⊂ X and
a positive number ε, by the ε-ball aboutA we mean B(A; ε) =

⋃

{B(x; ε) : x ∈ A}.

Let Γ be an index set. A collection τ = {(Ai, Bi) : i ∈ Γ} of pairs of disjoint
closed subsets of X is called essential if for every {Li : i ∈ Γ}, where Li is a
partition in X between Ai and Bi for every i ∈ Γ, we have

⋂

i∈Γ Li 6= ∅; if τ is
not essential then it is called inessential .

A collection A of subsets of a space X is called closure-distributive if for every
finite subcollection {A1, A2, · · · , An} of A, the equality Cl(A1 ∩A2 ∩ · · · ∩An) =
ClA1 ∩ ClA2 ∩ · · · ∩ ClAn holds.

1.2 Lemma ([7, Lemma 3.2]). Let V be a closure-distributive finite collection of
open subsets of a space X and (F, U) be a pair of subsets of X such that F is
closed, U is open and F ⊂ U . Then there exists an open subset V of X such that
F ⊂ V ⊂ ClV ⊂ U and V ∪ {V } is closure-distributive.

The following lemma will play an important role in the proof of our main
theorem.

1.3 Lemma ([10], cf. [5]). Every Čech-complete space X has a compactification
αX such that αX − X is strongly countable-dimensional.

2. Spaces having a S-weakly infinite-dimensional compactification

We consider a characterization of spaces having a S-weakly infinite-dimensional
compactification in terms of a special metric.

2.1 Definition. A space X is µ-S-weakly infinite-dimensional if there exists a
totally bounded metric d on X satisfying the following condition:

(∗) For every collection {(Ai, Bi) : i < ω} of pairs of disjoint closed subsets of
X with d(Ai, Bi) > 0 for every i < ω, there exists a collection {Li : i < ω}
of subsets of X such that Li is a partition in X between Ai and Bi for every
i < ω and

⋂

i<n Li = ∅ for some n < ω.

Obviously, every S-weakly infinite-dimensional space is µ-S-weakly infinite-
dimensional and every µ-S-weakly infinite-dimensional compact space is S-weakly
infinite-dimensional.
A space Y is a Čech-complete extension of a space X if Y contains X as a

dense subspace and Y is Čech-complete.

2.2 Lemma. Every µ-S-weakly infinite-dimensional space has a µ-S-weakly infi-
nite-dimensional Čech-complete extension.

Proof: Let X be a µ-S-weakly infinite-dimensional space and d be a totally
bounded metric on X satisfying the condition (∗) in Definition 2.1.
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Take an arbitrary countable base U for X̃ which is closed under finite unions.
Note that X̃ is compact. Let us set

A =

{

(U, U ′;V, V ′) :
U, U ′, V, V ′ ∈ U ,Cl

X̃
U ⊂ U ′,Cl

X̃
V ⊂ V ′

and Cl
X̃

U ′ ∩ Cl
X̃

V ′ = ∅

}

.

We enumerate A as A = {(Ui, U
′

i ;Vi, V
′

i ) : i < ω}. Let us set

D = {∆ ∈ [ω]<ω : {(Cl
X̃

U ′

n ∩ X,Cl
X̃

V ′

n ∩ X) : n ∈ ∆} is inessential in X}.

Consider an element ∆ ∈ D. We can take a partition L(∆, n) in X between
Cl

X̃
U ′

n ∩ X and Cl
X̃

V ′
n ∩ X for every n ∈ ∆ such that

⋂

n∈∆ L(∆, n) = ∅. For

every n ∈ ∆, we take a partition L̃(∆, n) in X̃ between Cl
X̃

Un and ClX̃ Vn such

that L̃(∆, n) ∩ X ⊂ L(∆, n). For every ∆ ∈ D the set

T∆ =
⋂

n∈∆

L̃(∆, n)

is closed in X̃ and disjoint from X . Thus the space

Y = X̃ −
⋃

{T∆ : ∆ ∈ D}

is a Čech-complete extension of X . Let dY be the restriction of d̃ to Y . It
suffices to show that dY satisfies the condition (∗) in Definition 2.1. Consider a
collection {(Ai, Bi) : i < ω} of pairs of closed subsets of Y with dY (Ai, Bi) > 0

for every i < ω. Since d̃(Cl
X̃

Ai,ClX̃ Bi) = dY (Ai, Bi) > 0, we have Cl
X̃

Ai ∩

Cl
X̃

Bi = ∅. Take U i, U
′i, V i, V

′i ∈ U such that Cl
X̃

Ai ⊂ U i ⊂ Cl
X̃

U i ⊂ U
′i,

Cl
X̃

Bi ⊂ V i ⊂ Cl
X̃

V i ⊂ V
′i, and Cl

X̃
U

′i ∩ Cl
X̃

V
′i = ∅ for every i < ω. Since

d̃(Cl
X̃

U
′i,Cl

X̃
V

′i) > 0, we have d(Cl
X̃

U
′i ∩ X,Cl

X̃
V

′i ∩ X) > 0. Thus there

exists a partition Li in X between Cl
X̃

U
′i ∩ X and Cl

X̃
V

′i ∩ X for every i < ω

such that
⋂

i<m Li = ∅ for some m < ω. Since {(Cl
X̃

U
′i ∩ X,Cl

X̃
V

′i ∩ X) :

i < m} is inessential in X , we have {(U i, U
′i;V i, V

′i) : i < m} ∈ A; thus

(U i, U
′i, V i;V

′i) = (Un(i), U
′

n(i);Vn(i), V
′

n(i)) for some n(i) < ω. Letting

∆ = {n(i) : i < m},

we have ∆ ∈ D. For every i < m, letting

Li = L̃(∆, n(i)) ∩ Y,
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Li is a partition in Y between Ai and Bi. For every i ≥ m we take a partition Li

in Y between Ai and Bi. We have

⋂

i<m

Li =
⋂

i<m

( L̃(∆, n(i)) ∩ Y ) =
⋂

n(i)∈∆

L̃(∆, n(i)) ∩ Y

= T∆ ∩ Y ⊂ T∆ ∩ (X̃ − T∆) = ∅,

thus dY satisfies the condition (∗) in Definition 2.1. Hence Y is µ-S-weakly infinite-
dimensional. �

2.3 Lemma. Every Čech-complete µ-S-weakly infinite-dimensional space X has
a S-weakly infinite-dimensional compactification.

Proof: Since X is Čech-complete, by Lemma 1.3, there exists a compactification
αX such that the remainder αX −X is strongly countable-dimensional. We shall
prove that αX is S-weakly infinite-dimensional.
Let {(Ai, Bi) : i < ω} be a collection of pairs of disjoint closed subsets of αX .

For every i < ω, we take two open subsets U2i+1 and V2i+1 of αX such that
A2i+1 ⊂ U2i+1, B2i+1 ⊂ V2i+1 and ClαX U2i+1 ∩ClαX V2i+1 = ∅. Since αX −X
is A-weakly infinite-dimensional, there exists a partition L2i+1 in αX−X between
ClαX U2i+1 ∩ (αX − X) and ClαX V2i+1 ∩ (αX − X) for every i < ω such that
⋂

i<ω L2i+1 = ∅. For every i < ω we take a partition L′

2i+1 in αX between A2i+1
and B2i+1 such that L′

2i+1 ∩ (αX − X) ⊂ L2i+1. Let us set K =
⋂

i<ω L′

2i+1.
SinceK is S-weakly infinite-dimensional, there exists a partition L2i inK between
A2i ∩ K and B2i ∩ K for every i < ω such that

⋂

i<n L2i = ∅ for some n < ω.

For every i < ω we take a partition L′

2i in αX between A2i and B2i such that
L′

2i ∩ K ⊂ L2i. Obviously, we have
⋂

i<ω L′

i = ∅. This implies that αX is A-
weakly infinite-dimensional and hence since αX is compact it is also S-weakly
infinite-dimensional. �

2.4 Lemma. Every space X having a S-weakly infinite-dimensional compactifi-
cation αX is µ-S-weakly infinite-dimensional.

Proof: Take an arbitrary metric d on αX . Let dX be the restriction d to X . It
is easy to show that dX satisfies the condition (∗) in Definition 2.1. Hence X is
µ-S-weakly infinite-dimensional. �

We now come to our main theorem.

2.5 Theorem. A space X has a S-weakly infinite-dimensional compactification
if and only if X is µ-S-weakly infinite-dimensional.

Proof: The theorem follows from Lemmas 2.2, 2.3 and 2.4. �

2.6 Problem. Does Lemma 2.2 remain true if we replace ‘a totally bounded
metric on X ’ in Definition 2.1 by ‘a metric on X ’?
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3. Spaces having a countable-dimensional compactification

In this section we consider characterizations of spaces having a countable-
dimensional compactification.

A collection A of subsets of a spaceX is strongly point-finite if for every infinite
subcollection A′ of A there exists A′′ ∈ [A′]<ω such that ∩A′′ = ∅.
We need the following theorem to prove our main theorems.

3.1 Theorem ([5, Theorem 1]). A space X has small transfinite dimension trind
if and only if X has a base B such that {BdB : B ∈ B} is strongly point-finite.

On the other hand, the following theorem is well-known.

3.2 Theorem ([8], [9]). A space X is countable-dimensional if and only if for
every collection {(Ai, Bi) : i < ω} of pairs of disjoint closed subsets of X , there
exists a collection {Li : i < ω} of subsets of X such that Li is a partition in X
between Ai and Bi for every i < ω and {Li : i < ω} is point-finite.

A collection A of subsets of a space X is separating in X if for every x ∈ X
and every closed set F ⊂ X with x /∈ F there exist A1, A2 ∈ A such that x ∈ A1,
F ⊂ A2 and A1 ∩ A2 = ∅. Obviously, every separating collection of open subsets
of a space X is a base for X .

3.3 Definition. A spaceX is small countable-dimensional if there exists a count-
able separating collection B of open subsets ofX satisfying the following condition:

(∗) For every collection {(Bi1, Bi2) : i < ω} of pairs of elements of B with
ClBi1 ∩ ClBi2 = ∅ for every i < ω, there exists a collection {Li : i < ω} of
subsets of X such that Li is a partition in X between ClBi1 and ClBi2 for
every i < ω and {Li : i < ω} is strongly point-finite.

We now come to our main theorem.

3.4 Theorem. A space X has a countable-dimensional compactification if and
only if X is small countable-dimensional.

Proof: Let X be small countable-dimensional and U be a countable separating
collection of open subsets of X satisfying the condition (∗) in Definition 3.3. Let
us set

A = {(U, U ′) : U, U ′ ∈ U with Cl
X̃

U ∩ Cl
X̃

U ′ = ∅}.

We enumerate A as A = {(Ui, U
′

i) : i < ω}. Take a partition Li between ClUi

and ClU ′

i for every i < ω such that {Li : i < ω} is strongly point-finite. We
can take disjoint open subsets Bi and B′

i such that ClUi ⊂ Bi,ClU
′

i ⊂ B′

i and
X − Li = Bi ∪ B′

i. It is easy to show that the set B = {Bi : i < ω} is a base
for X . Since {Li : i < ω} is strongly point-finite, so is {BdBi : i < ω}. From
Theorem 1.1, X has small transfinite dimension trind. By Theorem 3.1, X has a
countable-dimensional compactification.
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Now let αX be a countable-dimensional compactification of X and U be a
countable base U for αX . Let us set

A = {(U, U ′) : U, U ′ ∈ U with ClαX U ⊂ U ′}.

We enumerate A as A = {(Ui, U
′

i) : i < ω}. For every i < ω, inductively, we shall
construct two open subsets Vi and V ′

i of αX satisfying the following conditions:

ClαX Ui ⊂ Vi ⊂ ClαX Vi ⊂ αX − ClαX V ′

i ⊂ αX − V ′

i ⊂ U ′

i and

V = {Vi : i < ω} ∪ {V ′

i : i < ω} is closure-distributive.

Assume that for every k < i (> 0) we have constructed two open subsets Vk

and V ′

k of αX satisfying the following conditions: ClαX Uk ⊂ Vk ⊂ ClαX Vk ⊂
αX − ClαX V ′

k ⊂ αX − V ′

k ⊂ U ′

k and Vi = {Vk : k < i} ∪ {V ′

k : k < i} is
closure-distributive. By Lemma 1.2, there exists open subsets V ′

i and V ′

i of αX
such that ClαX Ui ⊂ Vi ⊂ ClαX Vi ⊂ αX − ClαX V ′

i ⊂ αX − V ′

i ⊂ U ′

i and
Vi+1 = Vi ∪ {Vi, V

′

i } is closure-distributive. It is easily seen that V is closure-
distributive. Let us set

B = V|X.

We shall prove that B is a countable separating collection of open subsets of
X satisfying the condition (∗) in Definition 3.3. First we shall show that B is
separating. Consider a point x ∈ X and a closed subset F of X with x /∈ F .
The collection U being a base for αX , we can take U, U ′ ∈ U such that x ∈ U ⊂
ClαX U ⊂ U ′ ⊂ ClαX U ′ ⊂ αX − ClαX F . Since (U, U ′) ∈ A, (U, U ′) = (Un, U ′

n)
for some n < ω. We have x ∈ Un ⊂ ClαX Un ⊂ Vn; thus x ∈ Vn ∩ X ∈ B.
Since αX − V ′

n ⊂ U ′
n ⊂ ClαX U ′

n ⊂ αX − ClαX F , we have ClαX F ⊂ V ′
n;

thus F = ClαX F ∩ X ⊂ V ′
n ∩ X ∈ B. Obviously, (Vn ∩ X) ∩ (V ′

n ∩ X) = ∅.
Thus B is separating. Next, we shall show that B satisfies the condition (∗) in
Definition 3.3. Consider a collection {(Bi1, Bi2) : i < ω} of pairs of elements of
B with ClX Bi1 ∩ ClX Bi2 = ∅ for every i < ω. For every i < ω we can take
B′

i1, B
′

i2 ∈ V such that

Bi1 = B′

i1 ∩ X and Bi2 = B′

i2 ∩ X.

Then we have

ClαX B′

i1 ∩ClαX B′

i2 = ClαX (B
′

i1 ∩ B′

i2) = ClαX (B
′

i1 ∩ B′

i2 ∩ X)

= ClαX (Bi1 ∩ Bi2) ⊂ ClαX (ClX Bi1 ∩ ClX Bi2) = ∅.

Since αX is countable-dimensional, we can take a collection {L′

i : i < ω} of
subsets of αX such that L′

i is a partition in αX between ClαX B′

i1 and ClαX B′

i2,
and {L′

i : i < ω} is strongly point-finite. Then Li = L′

i ∩ X is a partition in X
between ClX Bi1 and ClX Bi2. Obviously, {Li : i < ω} is strongly point-finite;
thus B satisfies the condition (∗) in Definition 3.3. Hence X is small countable-
dimensional. �
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3.5 Problem. Does Theorem 3.4 remain true if we replace ‘a countable separat-
ing collection of open subsets of a space X ’ in Definition 3.3 by ‘a countable base
for X ’?

Next we consider a characterization of spaces having a countable-dimensional
compactification in terms of a special metric.

3.6 Definition. A space X is µ-countable-dimensional if there exists a totally
bounded metric d on X satisfying the following condition:

(∗) For every collection {(Ai, Bi) : i < ω} of pairs of disjoint closed subsets of
X with d(Ai, Bi) > 0 for every i < ω, there exists a collection {Li : i < ω}
of subsets of X such that Li is a partition in X between Ai and Bi for every
i < ω and {Li : i < ω} is strongly point-finite.

3.7 Theorem. A space X has a countable-dimensional compactification if and
only if X is µ-countable-dimensional.

Proof: Let X be µ-countable-dimensional and d be a totally bounded metric on
X satisfying the condition (∗) in Definition 3.6. The completion (X̃, d̃) of (X, d)

is compact. Take an arbitrary countable base U for X̃ . Let us set

A = {(U, U ′) : U, U ′ ∈ U with Cl
X̃

U ⊂ U ′}.

We enumerate A as A = {(Ui, U
′

i) : i < ω}. For every i < ω, since Cl
X̃

Ui ∩

(X̃ −U ′

i) = ∅, εi = d̃(Cl
X̃

Ui, X̃ −U ′

i) > 0. Thus we can take a partition Li in X

between Cl
X̃

B(Cl
X̃

Ui; εi/3) ∩ X and Cl
X̃

B(X̃ − U ′

i ; εi/3) ∩ X for every i < ω
such that {Li : i < ω} is strongly point-finite. For every i < ω we take a partition

L̃i in X̃ between Cl
X̃

Ui and X̃ − U ′

i such that L̃i ∩ X ⊂ Li. Let us set

D = {∆ ∈ [ω]<ω :
⋂

n∈∆

Ln = ∅}.

For every ∆ ∈ D the set

T∆ =
⋂

n∈∆

L̃n

is closed in X̃ and disjoint from X . The set

Y = X̃ −
⋃

{T∆ : ∆ ∈ D}

is a Čech-complete extension of X . Now, for every i < ω, we can take disjoint
open subsets Vi and V ′

i of Y such that ClX̃ Ui ∩ Y ⊂ Vi, (X̃ − U ′

i) ∩ Y ⊂ V ′

i and

Y − (L̃i ∩ Y ) = Vi ∪ V ′

i . Let us set

V = {Vi : i < ω}.
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It is easily seen that V is a base for Y . We shall show that {BdY Vi : i < ω} is
strongly point-finite. Obviously, BdY Vi ⊂ L̃i ∩ Y for every i < ω. It suffices to
show that {L̃i ∩ Y : i < ω} is strongly point-finite. Consider an infinite subset
Λ of ω. The collection {Li : i < ω} being strongly point-finite, we can take
∆ ∈ [Λ]<ω such that

⋂

n∈∆ Ln = ∅; thus ∆ ∈ D. We have
⋂

n∈∆(L̃n ∩ Y ) =

T∆ ∩ Y ⊂ T∆ ∩ (X̃ − T∆) = ∅. Thus {L̃i ∩ Y : i < ω} is strongly point-finite. By
Theorem 3.1, Y has a countable-dimensional compactification αY . Then αY is a
compactification of X .
Now let αX be a countable-dimensional compactification of X . Take an arbi-

trary metric d on αX . Let dX be the restriction of d to X . It is easy to show
that dX satisfies the condition (∗) in Definition 3.6. Hence X is µ-countable-
dimensional.

�

3.8 Problem. Does Theorem 3.7 remain true if we replace ‘a totally bounded
metric on X ’ in Definition 3.6 by ‘a metric on X ’?
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