Previous |  Up |  Next

Article

Keywords:
ball structure; ballean; resolvability; extraresolvability
Summary:
A ballean is a set endowed with some family of balls in such a way that a ballean can be considered as an asymptotic counterpart of a uniform topological space. We introduce and study a new cardinal invariant of a ballean, the extraresolvability, which is an asymptotic reflection of the corresponding invariant of a topological space.
References:
[1] Alas O.T., Garcia-Ferreira S., Tomita A.H.: Extraresolvability and cardinal arithmetic. Comment. Math. Univ. Carolin. 40 2 (1999), 279-292. MR 1732649 | Zbl 0976.54004
[2] Ceder J.G.: On maximally resolvable spaces. Fund. Math. 55 (1964), 87-93. MR 0163279 | Zbl 0139.40401
[3] Comfort W.W., Masaveau O., Zhou H.: Resolvability in topology and topological groups. Ann. New York Acad. Sci. 767 (1995), 17-27.
[4] Comfort W.W., García-Ferreira S.: Resolvability: a selective survey and some new results. Topology Appl. 74 (1996), 149-167. MR 1425934
[5] Dranishnikov A.: Asymptotic topology. Russian Math. Survey 55 (2000), 71-116. MR 1840358 | Zbl 1028.54032
[6] Filali M., Protasov I.: Spread of balleans. Appl. Gen. Topol., submitted. MR 2153427
[7] García-Ferreira S., Malykhin V.I., Tomita A.H.: Extraresolvable spaces. Topology Appl. 101 (2000), 257-271. MR 1733807
[8] Hewitt H.: A problem of set theoretic topology. Duke Math. J. 10 (1943), 309-333. MR 0008692 | Zbl 0060.39407
[9] Protasov I., Banakh T.: Ball Structures and Colorings of Graphs and Groups. Math. Stud. Monogr. Ser. 11, VNTL, Lviv, 2003. MR 2392704 | Zbl 1147.05033
[10] Protasov I., Zarichnyi M.: General Asymptology. Math. Stud. Monogr. Ser., VNTL, Lviv, 2006. MR 2406623
[11] Protasov I.V.: Resolvability of groups (in Russian). Mat. Stud. 9 (1998), 130-148. MR 1687086
[12] Protasov I.V.: Resolvability of ball structures. Appl. Gen. Topol. 5 (2004), 191-198. MR 2121788 | Zbl 1062.54006
[13] Protasov I.V.: Cellularity and density of balleans. Appl. Gen. Topol., to appear. MR 2398520 | Zbl 1152.54312
[14] Roe J.: Lectures on Coarse Geometry. University Lecture Series 31, American Mathematical Society, Providence, RI, 2003. MR 2007488 | Zbl 1042.53027
Partner of
EuDML logo