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Extraresolvability of balleans

I.V. Protasov

Abstract. A ballean is a set endowed with some family of balls in such a way that a
ballean can be considered as an asymptotic counterpart of a uniform topological space.
We introduce and study a new cardinal invariant of a ballean, the extraresolvability,
which is an asymptotic reflection of the corresponding invariant of a topological space.
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1. Uniform spaces and balleans

A ball structure is a triple B = (X, P, B), where X , P are nonempty sets and,
for any x ∈ X and α ∈ P , B(x, α) is a subset of X which is called a ball of radius α
around x. It is supposed that x ∈ B(x, α) for all x ∈ X, α ∈ P . The set X is called
the support of B, P is called the set of radii . Given any x ∈ X, A ⊆ X, α ∈ P we
put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)},

B(A, α) =
⋃

a∈A

B(a, α),

B∗(A, α) =
⋃

a∈A

B∗(a, α).

A ball structure B = (X, P, B) is called

• lower symmetric if, for any α, β ∈ P , there exist α′, β′ ∈ P such that, for every
x ∈ X ,

B∗(x, α′) ⊆ B(x, α), B(x, β′) ⊆ B∗(x, β);

• upper symmetric if, for any α, β ∈ P , there exist α′, β′ such that, for every
x ∈ X ,

B(x, α) ⊆ B∗(x, α′), B∗(x, β) ⊆ B(x, β′);

• lower multiplicative if, for any α, β ∈ P , there exists γ ∈ P such that, for every
x ∈ X ,

B(B(x, γ), γ) ⊆ B(x, α) ∩ B(x, β);
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• upper multiplicative if, for any α, β ∈ P , there exists γ ∈ P such that, for every
x ∈ X ,

B(B(x, α), β) ⊆ B(x, γ).

Let B = (X, P, B) be a lower symmetric and lower multiplicative ball structure.
Then the family

{

⋃

x∈X

B(x, α) × B(x, α) : α ∈ P

}

is a base of entourages for some (uniquely determined) uniformity on X . On the
other hand, if U ⊆ X ×X is a uniformity on X , then the ball structure (X,U , B)
is lower symmetric and lower multiplicative, where B(x, U) = {y ∈ X : (x, y) ∈
U}. Thus, the lower symmetric and lower multiplicative ball structures can be
identified with the uniform topological spaces.
A ball structure is said to be a ballean (or a coarse structure) if it is upper

symmetric and upper multiplicative. For motivation to study balleans as the
asymptotic counterparts of the uniform topological spaces see [5], [9], [10], [14].
Now we define the mappings which play the part of uniformly continuous map-

pings on the ballean stage. Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans.
A mapping f : X1 → X2 is called a ≺-mapping if, for every α ∈ P1, there exists
β ∈ P2 such that, for every x ∈ X1,

f(B1(x, α)) ⊆ B2(f(x), β).

A bijection f : X1 → X2 is called an asymorphism between B1 and B2 if f and
f−1 are ≺-mappings. If X1 = X2 and the identity mapping id : X1 → X2 is
an asymorphism, we identify B1 and B2, and write B1 = B2. For each ballean
B = (X, P, B), replacing every ball B(x, α) with B(x, α) ∩ B∗(x, α), we get the
same ballean. Therefore, in what follows, we assume that B(x, α) = B∗(x, α)
for all x ∈ X, α ∈ P .
Let B = (X, P, B) be a ballean. We say that B is connected if, for any two

points x, y ∈ X , there exists α ∈ P such that y ∈ B(x, α). In what follows, all
balleans under consideration are supposed to be connected.

A subset V ⊆ X is called bounded if there exist x ∈ X and α ∈ P such that
V ⊆ B(x, α). A ballean B is called bounded if its support is bounded.
For a ballean B we define a preordering ≤ on its set P of radii by the rule:

α ≤ β if and only if B(x, α) ⊆ B(x, β) for every x ∈ X . A subset P ′ ⊆ P is called
cofinal if, for every α ∈ P , there exists α′ ∈ P such that α ≤ α′. A cofinality
cf(B) of B is the minimal cardinality of cofinal subsets of P .
Every metric space (X, d) determines the metric ballean B(X, d) = (X, R+, Bd),

where Bd(x, r) = {y ∈ X : d(x, y) ≤ r}. A ballean B is called metrizable if B
is asymorphic to B(X, d) for some metric space (X, d). By [9, Theorem 9.1], a
ballean B is metrizable if and only if cf(B) ≤ ℵ0.
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2. Types of subsets of a ballean

Let B = (X, P, B) be a ballean. We say that a subset A of X is

• large if there exists α ∈ P such that X = B(A, α);
• small if X \ B(A, α) is large for every α ∈ P ;
• thick if int(A, α) 6= ∅ for every α ∈ P , where int(A, α) = {x ∈ X : B(x, α) ⊆

A};
• extralarge if int(A, α) is large for every α ∈ P ;
• piecewise large if there exists β ∈ P such that int(B(A, β), α) 6= ∅ for every

α ∈ P ;
• pseudodiscrete if, for every α ∈ P , there exists a bounded subset V of X such
that B(a, α) ∩ A = {a} for every a ∈ A \ V .

We shall use the following elementary observations from [9, Chapter 12].

1. For a subset S of X , the following properties are equivalent: S is small, S is
not piecewise large, X \ S is extralarge, (X \ S) ∩ L is large for every large
subset L of X .

2. A subset A of X is thick if and only if A ∩ L 6= ∅ for every large subset L
of X .

3. If the subsets X1, X2, . . . , Xn of X are extralarge, then X1 ∩ · · · ∩ Xn is
extralarge. If the subsets S1, . . . , Sn ofX are small, then S1∪· · ·∪Sn is small.
If a piecewise large subset A of X is finitely partitioned A = A1 ∪ · · · ∪ An,
then at least one cell Ai of the partition is piecewise large.

These observations give a foundation for the following uniform spaces-balleans
vocabulary:

dense subset large subset
nowhere dense subset small subset
subset with nonempty interior thick subset
subset with dense interior extralarge subset
somewhere dense subset piecewise large subset
discrete subset pseudodiscrete subset

Using this vocabulary, we get the following cardinal invariants of a ballean:

density (B) = min{|L| : L is a large subset of X},
cellularity (B) = sup{|F | : F is a disjoint family of thick subsets of X},
spread (B) = sup{|Y |B : Y is a pseudodiscrete subset of X}, where
|Y |B = min{|Y \ V | : V is a bounded subset of X}.

For interrelations between these invariants see [6], [13].

3. Resolvability

A topological space X is called resolvable [8] if X has two disjoint dense sub-
sets. For a cardinal κ, a topological spaceX is called κ-resolvable [2] if X contains
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κ pairwise disjoint dense subsets. For resolvability of topological spaces and topo-
logical groups see the surveys [3], [4], [11].
Given a cardinal κ, we say that a ballean B = (X, P, B) is κ-resolvable if X

can be partitioned to κ large subsets. The resolvability of B is the cardinal

res(B) = sup{κ : B is κ-resolvable}.

Clearly, res(B) ≤ ∆(B), where ∆(B) = min {|Y |: Y is a thick subset of X}.
We say that a subset Y of X is κ-crowded if there exists α ∈ P such that

|B(y, α) ∩ Y | ≥ κ for every y ∈ Y . A ballean B is called κ-crowded if its support
X is κ-crowded. The crowdedness of B is the cardinal

cr(B) = sup{κ : X is κ-crowded}.

The following two theorems are from [12].

Theorem 1. For every ballean B = (X, P, B), the following statements hold:

(i) if B is κ-crowded, then B is κ-resolvable;
(ii) cr(B) ≤ res(B) ≤ cr(B) · cf(B);
(iii) if κ is a finite cardinal and B is κ-resolvable, then B is κ-crowded.

Theorem 2. Let (X, d) be a metric space, B = B(X, d). Then res(B) = cr(B)
and X can be partitioned to cr(B) large subsets.

4. Extraresolvability

A topological space X is called extraresolvable [7], [1], if there exists a family
F of dense subsets of X such that |F| > ∆(X), where ∆(X) = min{|U | : U is a
nonempty open subset of X}, and F ∩ F ′ is nowhere dense whenever F, F ′ ∈ F
and F 6= F ′.
Given a cardinal κ, we say that a ballean B = (X, P, B) is κ-extraresolvable if

there exists a family F of large subsets of X such that |F| = κ and F ∩ F ′ is
small whenever F, F ′ are distinct elements of F . The extraresolvability of B is the
cardinal

exres(B) = sup{κ : B is κ-extraresolvable}.

Clearly, res(B) ≤ exres(B). We note also that res(B) = exres(B) = |X | for every
bounded ballean B.

Lemma 1. Let B = (X, P, B) be a ballean, α ∈ P , n ∈ N. Assume that there

exists a piecewise large subset Y of X such that the family {B(y, α) : y ∈ Y } is
disjoint and |B(y, α)| ≤ n for every y ∈ Y . If F1, . . . , Fn+1 are subsets of X such
that B(Fi, α) = X , i ∈ {1, . . . , n+1}, then there exist distinct i, j ∈ {1, . . . , n+1}
such that Fi ∩ Fj is piecewise large.
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Proof: We assume on the contrary that each subset Fi ∩ Fj is small and put

Z =
⋃

i6=j

(Fi ∩ Fj).

Then Z is small and (Fi\Z)∩(Fj\Z) = ∅, i 6= j. Since Y is piecewise large and
Z is small, there exists y ∈ Y such that B(y, α)∩Z = ∅. Since B(Fi, α) = X , we
have Fi ∩B(y, α) 6= ∅. Since |B(y, α)| ≤ n, there are distinct i, j ∈ {1, . . . , n+ 1}
such that Fi ∩Fj ∩B(y, α) 6= ∅. We take any y′ ∈ Fi ∩Fj ∩B(y, α). Then y′ ∈ Z
contradicting to the choice of y. �

Theorem 3. Let B = (X, P, B) be a ballean. If cr(B) is finite then

cr(B) = res(B) = exres(B).

Proof: Let cr(B) = n. By Theorem 1(i), n ≤ res(B). Let F1, . . . , Fn+1 be
distinct large subsets of X . We show that Fi ∩ Fj is piecewise large for some
distinct i, j ∈ {1, . . . , n+ 1} so exres(B) ≤ n. For every α ∈ P , we put

Xα = {x ∈ X : |B(x, α)| ≤ n}.

We assume that Xα is small for some α ∈ P . Then X \ B(Xα, α) is large. We
pick β ∈ P such that

⋃

{B(x, β) : x ∈ X \ B(Xα, α)} = X.

Then we choose γ ∈ P such that B(B(x, β), β) ⊆ B(x, γ) for each x ∈ X . We
take an arbitrary y ∈ X and choose x ∈ X\B(Xα, α) such that y ∈ B(x, β). Then
B(x, β) ⊆ B(y, γ). It follows that |B(y, γ)| > n for every y ∈ X contradicting
cr(B) = n. Hence, Xα is piecewise large for every α ∈ P .

We choose α ∈ P such that B(Fi, α) = X for each i ∈ {1, . . . , n+1}. Then we
take a subset Y ⊆ Xα such that the family {B(y, α) : y ∈ Y } is maximal disjoint.
By the above paragraph, Xα is piecewise large so Y is piecewise large. Since
|B(y, α)| ≤ n for each y ∈ Y , we can apply Lemma 1 to conclude that Fi ∩ Fj is
not small for some distinct i, j ∈ {1, . . . , n+ 1}. �

Let B = (X, P, B) be a ballean. Given any α ∈ P and a cardinal κ, we put

X(α, κ) = {x ∈ X : |B(x, α)| ≤ κ}.
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Lemma 2. Let B = (X, P, B) be an unbounded ballean. Assume that, for every
α ∈ P , there exists a natural number n such that X(α, n) is piecewise large. Let
F be a family of large subsets of X such that |F| > cf(B). Then there exists an
infinite subfamily F ′ of F such that F ∩ F ′ is piecewise large for all F, F ′ ∈ F ′.

In particular, exres(B) ≤ cf(B).

Proof: Let P ′ be a cofinal subset of P such that |P ′| = cf(B). For every α ∈ P ,
we put

Fα = {F ∈ F : B(F, α) = X}.

Then F =
⋃

α∈P ′ Fα. If every family Fα, α ∈ P ′, is finite then |F| ≤ cf(B|)
contradicting the assumption. Hence, there exists α ∈ P ′ such that Fα is infinite.
We choose a natural number n such that X(α, n) is piecewise large. Let Y be
a subset of X(α, n) such that the family {B(y, α) : y ∈ Y } is maximal disjoint.
Since X(α, n) is piecewise large, Y is piecewise large. Let F1, . . . , Fn + 1 ∈ Fα.
By Lemma 1, there are distinct i, j ∈ {1, . . . , n+1} such that Fi ∩Fj is piecewise
large.
We consider a complete graph Γ with the set of vertices Fα. We color an edge

{F, F ′} of Γ in yellow if F ∩ F ′ is piecewise large, otherwise we color this edge in
blue. By Ramsey theorem, there exists an infinite subfamily F ′ of Fα such that
the complete subgraph Γ′ determined by F ′ is monochrome. By above paragraph,
Γ′ must be yellow. Hence, F ∩ F ′ is piecewise large for all F, F ′ ∈ F ′. �

Theorem 4. Let (X, d) be an unbounded metric space, B = B(X, d). Assume
that cr(B) = ℵ0 and, for every natural number m, there exists a natural number
n such that X(m, n) is piecewise large. Then

res(B) = exres(B) = ℵ0.

Proof: By Lemma 2, exres(B) ≤ ℵ0. By Theorem 2, res(B) = ℵ0. �

Corollary. Let (X, d) be an unbounded metric space, B = B(X, d). Assume
that cr(B) = ℵ0 and, for every natural number m, there exists a natural number
n such that |B(x, m)| ≤ n for every x ∈ X . Then

res(B) = exres(B) = ℵ0.

Lemma 3. Let B = (X, P, B) be a ballean, Y be a countable large subset of X ,
κ be an infinite cardinal. Assume that there exists α ∈ P such that the family
{B(y, α) : y ∈ Y } is disjoint and |B(y, α)| ≥ κ for each y ∈ Y . Then there exists

a disjoint family F of countable subsets of X such that |F| = κℵ0 and F ∩ F ′ is

finite for all distinct F, F ′ ∈ F . In particular, exres(B) ≥ κℵ0 .

Proof: Let Y = {yn : n ∈ ω}. For each n ∈ ω, we choose some subset Zn =
{z(n, γ0, γ1, . . . , γn) : γi ∈ κ} of distinct elements from B(yn, α). Then we fix
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some symbol v /∈ X and construct a homogeneous tree T of local degree κ with
the root v and the set of vertices {v} ∪

⋃

n∈ω Zn. At the first step we connect v
with all the vertices {z(0, γ0) : γ0 ∈ κ}. At the second step we connect each vertex
z(0, γ0) with all the vertices {z(1, γ0, γ1) : γ1 ∈ κ}. At the third step we connect
each vertex z(1, γ0, γ1) with all the vertices {z(2, γ0, γ1, γ2) : γ2 ∈ κ}, and so on.
After ω steps we get the tree T . Each ray in T starting at v determines a subset
F of X consisting of all vertices on this ray except v. We denote by F the family
of all obtained subsets. By the construction of T , we have F ∩B(y, α) 6= ∅ for all
y ∈ Y, F ∈ F . Since Y is large, each member of F is large. Clearly, |F| = κℵ0

and F ∩ F ′ is finite for all distinct F, F ′ ∈ F . �

Lemma 4. Let (X, d) be a metric space, B = B(X, d). Assume that there exists
n ∈ N such that X(n, k) is small for each k ∈ N, and

⋃

k∈N
X(n, k) is large. Then

exres(B) ≥ 2ℵ0 .

Proof: We put Y =
⋃

k∈N
X(n, k) and choose a subset Z of Y such that the

family {B(z, n) : z ∈ Z} is maximal disjoint. Clearly, Z is large. For every k ∈ N,
we put

Zk = {z ∈ Z : |B(z, n)| = k}.

Since each subset X(n, k), k ∈ N is small and Z is large, for every m ∈ ω, there
exists k ∈ N such that Zk 6= ∅ and k > m. Hence, we can choose an increasing
sequence (km)m∈ω of natural numbers such that Zkm

6= ∅ and km ≥ 2m.
For each m ∈ ω, we choose the pairwise disjoint subsets Z(m, 1), Z(m, 2), . . . ,

Z(m, 2m) of X such that for each z ∈ Zkm
∪ · · · ∪ Zkm+1−1, we have

|B(z, m) ∩ Z(m, i)| = 1, Z(m, i) ⊆ B(Zkm
∪ · · · ∪ Zkm+1−1, n), i ∈ {1, . . . , 2m}.

Then we construct a binary tree T with the root Z(0, 1) and the set of vertices
{Z(m, i) : m ∈ ω, i ∈ {1, . . . , 2m}}. We define the edges of T as follows. At the
first step we define the edges {Z(0, 1), Z(1, 1)}, {Z(0, 1), Z(1, 12)}. At the second
step we define the edges

{Z(1, 1), Z(2, 1)}, {Z(1, 1), Z(2, 2)}

{Z(1, 2), Z(2, 3)}, {Z(1, 2), Z(2, 4)},

and so on.
Every ray in T starting at the root Z(0, 1) determines a subset S of X which is

a union of all vertices of T (as the subsets of X) on this ray. By the construction
of T , S is large and the intersection of any two distinct subsets S, S′ of this form
is small. Since there are 2ℵ0 distinct rays in T , we conclude exres(B) ≥ 2ℵ0 . �

For a ballean B = (X, P, B) and a subset Y of X , we put BY = (Y, P, BY ),
where BY (y, α) = B(y, α) ∩ Y .
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Theorem 5. Let (X, d) be an unbounded countable metric space, B = B(X, d).
Assume that there exists n ∈ N such that X(n, k) is small for each k ∈ N. Then

exres(B) = 2ℵ0 .

Proof: We put Y =
⋃

k∈N
X(n, k), Z = X \Y and construct a family F ′ of large

subsets of X such that |F ′| = 2ℵ0 and F ∩ F ′ is small for all distinct F, F ′ ∈ F ′.
We consider three cases.
Case BY is bounded, BZ is unbounded. By Lemma 3, there exists a family

F , |F| = 2ℵ0 , of large subsets of BZ such that F ∩ F ′ is finite for all distinct
F, F ′ ∈ F . We put F ′ = {Y ∪ F : F ∈ F}.
Case BZ is bounded, BY is unbounded. By Lemma 4, there exists a family

F , |F| = 2ℵ0 , of large subsets of BY such that F ∩ F ′ is small for all distinct
F, F ′ ∈ F . We put F ′ = {Z ∪ F : F ∈ F}.
Case BY ,BZ are unbounded. Applying Lemmas 3 and 4 to BZ and BY , we

get two corresponding families F1, F2, |F1| = |F2| = 2
ℵ0 of large subsets of BZ

and BY . Let F1 = {Fλ : λ ∈ 2ℵ0}, F2 = {F ′
λ : λ ∈ 2ℵ0}. We put F ′ = {Fλ ∪ F ′

λ :

λ ∈ 2ℵ0}. �

It follows from Theorems 3, 4, 5 that, for a countable metric space (X, d),

exresB(X, d) could be either a natural number, or ℵ0, or 2
ℵ0 . It is easy to

construct an example for each case.

Theorem 6. Let κ be an infinite regular cardinal such that 2γ < κ for each
cardinal γ < κ. Then there exists a ballean B = (X, P, B) such that |X | = κ,
res(B) = κ and exres(B) = 2κ.

Proof: We denote by S the family of all subsets of X of cardinality < κ. Let
P be the set of all mappings f : X → S such that, for every x ∈ X , we have
x ∈ f(x) and

|{y ∈ X : x ∈ f(y)}| < κ.

Given any x ∈ X and α ∈ P , we put B(x, f) = f(x) and consider the ball
structure B = (X, P, B). Since B∗(x, f) = {y ∈ X : x ∈ f(y)}, B is upper
symmetric. Since κ is regular, |B(B(x, f), g)| < κ so B is upper multiplicative.
Hence, B is a ballean.
Let Y be a subset of X . If |Y | < κ, by regularity of κ, we conclude that Y

is bounded so Y is small. We assume that |Y | = κ and show that Y is large.
We choose a subset Z of Y such that |Z| = |X \ Y | and fix some bijection
g : Z → X \ Y . Then we define f ∈ P by the rule: f(x) = {x, g(x)} for each
x ∈ Z, and f(x) = {x} for each x ∈ X \ Z. Then B(Y, f) = X .
To conclude the proof, it suffices to point out a family F of subsets of X such

that |F| = 2κ and |F ∩ F ′| < κ for all distinct F, F ′ ∈ F . To this end we use the
standard construction. By the assumption 2γ < κ, γ < κ, we identify X with the
set of vertices of the binary tree T of height κ, and denote by F the family of all
rays starting at the root of T . �
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[7] Garćıa-Ferreira S., Malykhin V.I., Tomita A.H., Extraresolvable spaces, Topology Appl.
101 (2000), 257-271.

[8] Hewitt H., A problem of set theoretic topology, Duke Math. J. 10 (1943), 309–333.
[9] Protasov I., Banakh T., Ball Structures and Colorings of Graphs and Groups, Math. Stud.
Monogr. Ser. 11, VNTL, Lviv, 2003.

[10] Protasov I., Zarichnyi M., General Asymptology, Math. Stud. Monogr. Ser., VNTL, Lviv,
2006.

[11] Protasov I.V., Resolvability of groups (in Russian), Mat. Stud. 9 (1998), 130–148.
[12] Protasov I.V., Resolvability of ball structures, Appl. Gen. Topol. 5 (2004), 191–198.
[13] Protasov I.V., Cellularity and density of balleans, Appl. Gen. Topol., to appear.
[14] Roe J., Lectures on Coarse Geometry, University Lecture Series 31, American Mathema-

tical Society, Providence, RI, 2003.

Department of Cybernetics, Kiev University, Volodimirska 64, Kiev 01033, Ukraine

E-mail : protasov@unicyb.kiev.ua

(Received May 14, 2006, revised August 21, 2006)


		webmaster@dml.cz
	2012-05-01T00:03:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




