Previous |  Up |  Next

Article

Keywords:
degenerate elliptic equations; weighted Sobolev spaces
Summary:
In this article we establish the existence of higher order weak derivatives of weak solutions of Dirichlet problem for a class of degenerate elliptic equations.
References:
[1] Fabes E., Jerison D., Kenig C.: The Wiener test for degenerate elliptic equations. Ann. Inst. Fourier (Grenoble) 32 3 (1982), 151-182. MR 0688024
[2] Fabes E., Kenig C., Serapioni R.: The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7 1 (1982), 77-116. MR 0643158 | Zbl 0498.35042
[3] Franchi B., Serapioni R.: Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 4 (1987), 527-568. MR 0963489 | Zbl 0685.35046
[4] Garcia-Cuerva J., Rubio de Francia J.: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985. MR 0848147
[5] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin-New York, 1977. MR 0473443 | Zbl 1042.35002
[6] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs, Oxford University Press, New York, 1993. MR 1207810
[7] Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 | Zbl 0236.26016
[8] Turesson B.O.: Nonlinear potential theory and weighted Sobolev spaces. Lecture Notes in Math. 1736, Springer, Berlin, 2000. MR 1774162 | Zbl 0949.31006
Partner of
EuDML logo