Article
Keywords:
Borel-Cantelli Lemma; Stirling numbers
Summary:
We present some extensions of the Borel-Cantelli Lemma in terms of moments. Our result can be viewed as a new improvement to the Borel-Cantelli Lemma. Our proofs are based on the expansion of moments of some partial sums by using Stirling numbers. We also give a comment concerning the results of Petrov V.V., {\it A generalization of the Borel-Cantelli Lemma\/}, Statist. Probab. Lett. {\bf 67} (2004), no. 3, 233--239.
References:
[1] Chung K.L., Erdös P.:
On the application of the Borel-Cantelli Lemma. Trans. Amer. Math. Soc. 72 (1952), 1 179-186.
MR 0045327
[2] Erdös P., Rényi A.:
On Cantor's series with convergent $\Sigma 1/q_n$. Ann. Univ. Sci. Budapest Sect. Math. 2 (1959), 93-109.
MR 0126414
[3] Kochen S.P., Stone C.J.:
A note on the Borel-Cantelli Lemma. Illinois J. Math. 8 (1964), 248-251.
MR 0161355 |
Zbl 0139.35401
[5] Ortega J., Wschebor M.:
On the sequence of partial maxima of some random sequences. Stochastic Process. Appl. 16 (1983), 85-98.
MR 0723645
[6] Petrov V.V.:
A note on the Borel-Cantelli Lemma. Statist. Probab. Lett. 58 (2002), 3 283-286.
MR 1921874 |
Zbl 1017.60004
[7] Petrov V.V.:
A generalization of the Borel-Cantelli Lemma. Statist. Probab. Lett. 67 (2004), 3 233-239.
MR 2053525 |
Zbl 1101.60300
[8] Rényi A.:
Probability Theory. North-Holland Series in Applied Mathematics and Mechanics, vol. 10, North-Holland, Amsterdam-London, 1970; German version 1962, French version 1966, new Hungarian edition 1965.
MR 0315747
[9] Spitzer F.:
Principles of Random Walk. 2nd edition, Springer, New York-Heidelberg, 1976.
MR 0388547 |
Zbl 0979.60002
[10] Van Lint J.H., Wilson R.M.:
A Course in Combinatorics. 2nd ed., Cambridge University Press, Cambridge, 2001.
MR 1871828 |
Zbl 0980.05001