[1] Cassels J.W.S.:
Local Fields. London Mathematical Society, Student Texts 3, Cambridge Univ. Press, London, 1986.
MR 0861410 |
Zbl 0595.12006
[2] Basu S., Diagana T., Ramaroson F.:
A $p$-adic version of Hilbert-Schmidt operators and applications. J. Anal. Appl. 2 (2004), 3 173-188.
MR 2092641 |
Zbl 1077.47061
[3] de Bivar-Weinholtz A., Lapidus M.L.:
Product formula for resolvents of normal operator and the modified Feynman integral. Proc. Amer. Math. Soc. 110 (1990), 2 449-460.
MR 1013964
[4] Diagana T.:
Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications. Ann. Math. Blaise Pascal 12 (2005), 1 205-222.
MR 2126449 |
Zbl 1087.47061
[5] Diagana T.:
Erratum to: ``Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications". Ann. Math. Blaise Pascal 13 (2006), 105-106.
MR 2233015
[6] Diagana T.: Bilinear forms on non-Archimedean Hilbert spaces. preprint, 2005.
[7] Diagana T.:
Fractional powers of the algebraic sum of normal operators. Proc. Amer. Math. Soc. 134 (2006), 6 1777-1782.
MR 2207493 |
Zbl 1092.47027
[9] Diarra B.: Geometry of the $p$-adic Hilbert spaces. preprint, 1999.
[10] Johnson G.W., Lapidus M.L.:
The Feynman Integral and Feynman Operational Calculus. Oxford Univ. Press, Oxford, 2000.
MR 1771173
[12] Ochsenius H., Schikhof W.H.:
Banach spaces over fields with an infinite rank valuation. $p$-adic Functional Analysis (Poznan, 1998), Marcel Dekker, New York, 1999, pp.233-293.
MR 1703500 |
Zbl 0938.46056