Previous |  Up |  Next

Article

Keywords:
retraction; homogeneous space; topological groups; coset space
Summary:
We show that every retral continuum with the fixed point property is locally connected. It follows that an indecomposable continuum with the fixed point property is not a retract of a topological group.
References:
[1] Arhangel'skiĭ A.V.: Cell structures and homogeneity. Mat. Zametki 37 (1985), 4 580-586, 602. MR 0790982
[2] Bing R.H.: A homogeneous indecomposable plane continuum. Duke Math. J. 15 (1948), 729-742. MR 0027144 | Zbl 0035.39103
[3] Bing R.H.: Concerning hereditarily indecomposable continua. Pacific J. Math. 1 (1951), 43-51. MR 0043451 | Zbl 0043.16803
[4] Cauty R.: Espaces de Maltsev compacts qui ne sont pas des rétractes de groupes compacts. Bull. Polish Acad. Sci. Math. 46 (1998), 1 67-70. MR 1619403 | Zbl 0893.22002
[5] Ford L.R., Jr.: Homeomorphism groups and coset spaces. Trans. Amer. Math. Soc. 77 (1954), 490-497. MR 0066636 | Zbl 0058.17302
[6] Gartside P.M., Reznichenko E.A., Sipacheva O.V.: Mal'tsev and retral spaces. Topology Appl. 80 (1997), 1-2 115-129. MR 1469472 | Zbl 0888.54037
[7] Mal'tsev A.I.: On the general theory of algebraic systems. Mat. Sb. N.S. 35(77) (1954), 3-20. MR 0065533 | Zbl 0128.02301
[8] van Mill J.: The Infinite-Dimensional Topology of Function Spaces. North-Holland Mathematical Library, vol. 64, North-Holland, Amsterdam, 2001. MR 1851014 | Zbl 0969.54003
[9] van Mill J.: A note on Ford's example. Topology Proc. 28 (2004), 2 689-694. MR 2159753 | Zbl 1088.54015
[10] van Mill J., Ridderbos G.J.: Notes on retracts of coset spaces. Bull. Polish Acad. Sci. Math. 53 (2005), 169-179. MR 2163392 | Zbl 1129.54011
[11] Reznichenko E.A., Uspenskiĭ V.V.: Pseudocompact Mal'tsev spaces. Topology Appl. 86 (1998), 1 83-104, Special issue on topological groups. MR 1619345
[12] Sipacheva O.V.: Compacta with a continuous Mal'tsev operation and retracts of topological groups. Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1991), 1 33-36, 104. MR 1096268
[13] Ungar G.S.: On all kinds of homogeneous spaces. Trans. Amer. Math. Soc. 212 (1975), 393-400. MR 0385825 | Zbl 0318.54037
[14] Uspenskiĭ V.V.: For any $X$, the product $X\times Y$ is homogeneous for some $Y$. Proc. Amer. Math. Soc. 87 (1983), 1 187-188. MR 0677259
[15] Uspenskiĭ V.V.: Continuous images of Lindelöf topological groups. Dokl. Akad. Nauk SSSR 285 (1985), 4 824-827. MR 0821360
[16] Uspenskiĭ V.V.: The Mal'tsev operation on countably compact spaces. Comment. Math. Univ. Carolin. 30 (1989), 2 395-402. MR 1014140
Partner of
EuDML logo