[1] Gehring F.W.:
The $L^p$-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130 (1973), 265-277.
MR 0402038
[2] Giaquinta M.:
Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, 105, Princeton University Press, Princeton, NJ, 1983.
MR 0717034 |
Zbl 0516.49003
[3] Giaquinta M., Giusti E.:
On the regularity of the minima of variational integrals. Acta Math. 148 (1982), 31-46.
MR 0666107 |
Zbl 0494.49031
[4] Giaquinta M., Modica G.:
Non linear system of the type of the stationary Navier-Stokes system. J. Reine Angew. Math. 330 (1982), 173-214.
MR 0641818
[5] Giaquinta M., Modica G.:
Regularity results for some classes of higher order non linear elliptic systems. J. Reine Angew. Math. 311/312 (1979), 145-169.
MR 0549962 |
Zbl 0409.35015
[6] Giaquinta M., Struwe M.:
On the partial regularity of weak solutions of non-linear parabolic systems. Math. Z. 179 (1982), 437-451.
MR 0652852
[7] Haga J., Kikuchi N.:
On the higher integrability for the gradients of the solutions to difference partial differential systems of elliptic-parabolic type. Z. Angew. Math. Phys. 51 (2000), 290-303.
MR 1756171 |
Zbl 0969.35134
[8] Hoshino K., Kikuchi N.:
Gehring theory for time-discrete hyperbolic differential equations. Comment. Math. Univ. Carolinae 39.4 (1998), 697-707.
MR 1715459 |
Zbl 1060.35527
[9] Kaplický P., Málek J., Stará J.:
Global-in-time Hölder continuity of the velocity gradients for fluids with shear-dependent viscosities. Nonlinear Differential Equations Appl. 9 (2002), 175-195.
MR 1905824
[10] Kawabi H.: On a construction of weak solutions to non-stationary Navier-Stokes type equations via Rothe's scheme and their regularity. preprint, 2004.
[11] Kikuchi N.:
An approach to the construction of Morse flows for variational functionals. Nematics (Orsay, 1990), 195-199, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 332, Kluwer Acad. Publ., Dordrecht, 1991.
MR 1178095 |
Zbl 0850.76043
[12] Kikuchi N.:
A method of constructing Morse flows to variational functionals. Nonlinear World 1 (1994), 131-147.
MR 1297075 |
Zbl 0802.35068
[13] Ladyzhenskaya O.A.:
The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York-London-Paris, 1969.
MR 0254401 |
Zbl 0184.52603
[14] Nagasawa T.:
Construction of weak solutions of the Navier-Stokes equations on Riemannian manifold by minimizing variational functionals. Adv. Math. Sci. Appl. 9 (1999), 51-71.
MR 1690377 |
Zbl 0944.58021
[15] Naumann J., Wolff M.: Interior integral estimates on weak solutions of nonlinear parabolic systems. Institut für Mathematik der Humboldt-Universität zu Berlin, 1994, preprint 94-12.
[16] Rektorys K.:
On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables. Czechoslovak Math. J. 21 (1971), 318-339.
MR 0298237 |
Zbl 0217.41601
[17] Struwe M.:
On the Hölder continuity of bounded weak solutions of quasilinear parabolic system. Manuscripta Math. 35 (1981), 125-145.
MR 0627929
[18] Temam R.:
Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam, New York, 1977.
MR 0609732 |
Zbl 0981.35001