Previous |  Up |  Next

Article

Keywords:
harmonic space; harmonic morphism; biharmonic space; biharmonic function; biharmonic morphism
Summary:
Let $(X, \Cal H)$ and $(X',\Cal H')$ be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from $(X,\Cal H)$ to $(X',\Cal H')$ is a continuous map from $X$ to $X'$ which preserves the biharmonic structures of $X$ and $X'$. In the present work we study this notion and characterize in some cases the biharmonic morphisms between $X$ and $X'$ in terms of harmonic morphisms between the harmonic spaces associated with $(X,\Cal H)$ and $(X',\Cal H')$ and the coupling kernels of them.
References:
[1] Bouleau N.: Espaces biharmoniques et couplages de processus de Markov. J. Math. Pures Appl. 58 (1979), 187-204. MR 0581988
[2] Bouleau N.: Thèse de Doctorat d'Etat ès Sciences. Université de Paris VI, 1979.
[3] Constantinescu C., Cornea A.: Compactifications of harmonic spaces. Nagoya Math. J. 25 (1965), 1-57. MR 0174760 | Zbl 0138.36701
[4] Constantinescu C., Cornea A.: Potential Theory on Harmonic Spaces. Springer, Heidelberg, 1972. MR 0419799 | Zbl 0248.31011
[5] Csink L., Fitzsimmons P.J., Øksendal B.: A stochastic characterization of harmonic morphisms. Math. Ann. 287 (1990), 1 1-18. MR 1048277
[6] Csink L., Øksendal B.: Stochastic harmonic morphisms: Functions mapping the paths of one diffusion into the paths of another. Ann. Inst. Fourier 33 (1983), 219-240. MR 0699496
[7] Dellacherie C., Meyer P.A.: Probabilités et Potentiel. Chapter I à IV, Hermann, Paris, 1975. MR 0488194 | Zbl 0624.60084
[8] El Kadiri M.: Représentation intégrale dans le cadre de la théorie axiomatique des fonctions biharmoniques. Rev. Roumaine Math. Pures Appl. 42 (1997), 579-589. MR 1650389
[9] Fuglede B.: Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28 (1978), 107-144. MR 0499588 | Zbl 0408.31011
[10] Fuglede B.: Harmonic morphisms. Complex Analysis, Joensuu 1978, Proceedings (Eds. I. Laire, O. Lehto, T. Sorvali), Lecture Notes in Math. 747, Springer, Berlin, 1979, pp.123-132. MR 0553035 | Zbl 0948.53036
[11] Helms L.L.: Introduction to Potential Theory. Wiley-Interscience, 1969. MR 0261018 | Zbl 0188.17203
[12] Hervé R.M.: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel. Ann. Inst. Fourier 12 (1962), 415-517. MR 0139756
[13] Nicolescu M.: Les fonctions polyharmoniques. Hermann, Paris, 1936.
[14] Smyrnelis E.P.: Axiomatique des fonctions biharmoniques, I. Ann. Inst. Fourier 25 1 (1975), 35-97. MR 0382691 | Zbl 0295.31006
[15] Smyrnelis E.P.: Axiomatique des fonctions biharmoniques, II. Ann. Inst. Fourier 26 3 (1976), 1-47. MR 0477101
[16] Smyrnelis E.P.: Sur les fonctions hyperharmoniques d'ordre $2$. Lecture Notes in Math. 681, Springer, Berlin, 1978, pp.277-294. MR 0521791 | Zbl 0393.31004
Partner of
EuDML logo