Previous |  Up |  Next

Article

Title: Regular potentials of additive functionals in semidynamical systems (English)
Author: Rhouma, Nedra Belhaj
Author: Bezzarga, Mounir
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 3
Year: 2004
Pages: 555-572
.
Category: math
.
Summary: We consider a semidynamical system $(X,\Cal B,\Phi ,w)$. We introduce the cone $\Bbb A$ of continuous additive functionals defined on $X$ and the cone $\Cal P$ of regular potentials. We define an order relation ``$\leq $'' on $\Bbb A$ and a specific order ``$\prec $'' on $\Cal P$. We will investigate the properties of $\Bbb A$ and $\Cal P$ and we will establish the relationship between the two cones. (English)
Keyword: additive functional
Keyword: excessive functions
Keyword: regular potential
Keyword: semidynamical system
Keyword: specific order
MSC: 31D05
MSC: 37A60
MSC: 58F98
MSC: 60J45
MSC: 60J55
idZBL: Zbl 1127.31303
idMR: MR2103150
.
Date available: 2009-05-05T16:47:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119483
.
Reference: [1] Bezzarga M.: Coexcessive functions and duality for semi-dynamical systems.Rev. Roumaine Math. Pures Appl. 42 1-2 (1997), 15-30. MR 1650071
Reference: [2] Bezzarga M.: Théorie du potentiel pour les systèmes semi-dynamiques.Ph.D. Thesis, Faculty of Mathematics of the Bucharest University, Dec. 2000. Zbl 0861.31005
Reference: [3] Bezzarga M., Bucur Gh.: Théorie du potentiel pour les systèmes semi-dynamiques.Rev. Roumaine Math. Pures Appl. 39 (1994), 439-456. Zbl 0861.31005, MR 1298884
Reference: [4] Bezzarga M., Bucur Gh.: Duality for Semi-Dynamical Systems.Potential Theory - ICPT94, Walter de Gruyter, Berlin-New York, 1996, pp.275-286. Zbl 0861.31006, MR 1404713
Reference: [5] Bezzarga M., Moldoveanu E., Secelean N.: Dual resolvent for semidynamical systems.preprint (accessible at: http://adela.karlin.mff.cuni.cz/katedry/kma/pt).
Reference: [6] Bhatia N.P., Hájek O.: Local Semi-Dynamical Systems.Lecture Notes in Math. 90, Springer, Berlin-New York, 1969. MR 0251328
Reference: [7] Blumenthal R.M., Getoor R.K.: Markov Processes and Potential Theory.Academic Press, New York and London, 1968. Zbl 0169.49204, MR 0264757
Reference: [8] Boboc N., Bucur Gh., Cornea A.: Order and Convexity in Potential Theory.Lecture Notes in Math. 853, Springer, Berlin, 1981. Zbl 0534.31001, MR 0613980
Reference: [9] Boboc N., Bucur Gh.: Potential theory on ordered sets II.Rev. Roumaine Math. Pures Appl. 43 (1998), 685-720. Zbl 0995.31008, MR 1845086
Reference: [10] Dellacherie C., Meyer P.A.: Probabilités et potentiel.Chap. XV, Hermann, Paris, 1987. Zbl 0624.60084, MR 0488194
Reference: [11] Getoor R.K.: Transience and Recurrence of Markov Process.Séminaire de Probabilité XIV 1978-1979, Lecture Notes in Math. 784, Springer, Berlin, 1980, pp.397-409. MR 0580144
Reference: [12] Hájek O.: Dynamical Systems in the Plane.Academic Press, London-New York, 1968. MR 0240418
Reference: [13] Saperstone S.H.: Semidynamical Systems in Infinite Dimensional Space.App. Math. Sciences 37, Springer, New York-Berlin, 1981. MR 0638477
Reference: [14] Sharpe M.: General Theory of Markov Process.Pure and Applied Mathematics, 133, Academic Press, Inc., Boston, MA, 1988. MR 0958914
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-3_17.pdf 264.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo