Title:
|
Regular potentials of additive functionals in semidynamical systems (English) |
Author:
|
Rhouma, Nedra Belhaj |
Author:
|
Bezzarga, Mounir |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
45 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
555-572 |
. |
Category:
|
math |
. |
Summary:
|
We consider a semidynamical system $(X,\Cal B,\Phi ,w)$. We introduce the cone $\Bbb A$ of continuous additive functionals defined on $X$ and the cone $\Cal P$ of regular potentials. We define an order relation ``$\leq $'' on $\Bbb A$ and a specific order ``$\prec $'' on $\Cal P$. We will investigate the properties of $\Bbb A$ and $\Cal P$ and we will establish the relationship between the two cones. (English) |
Keyword:
|
additive functional |
Keyword:
|
excessive functions |
Keyword:
|
regular potential |
Keyword:
|
semidynamical system |
Keyword:
|
specific order |
MSC:
|
31D05 |
MSC:
|
37A60 |
MSC:
|
58F98 |
MSC:
|
60J45 |
MSC:
|
60J55 |
idZBL:
|
Zbl 1127.31303 |
idMR:
|
MR2103150 |
. |
Date available:
|
2009-05-05T16:47:30Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119483 |
. |
Reference:
|
[1] Bezzarga M.: Coexcessive functions and duality for semi-dynamical systems.Rev. Roumaine Math. Pures Appl. 42 1-2 (1997), 15-30. MR 1650071 |
Reference:
|
[2] Bezzarga M.: Théorie du potentiel pour les systèmes semi-dynamiques.Ph.D. Thesis, Faculty of Mathematics of the Bucharest University, Dec. 2000. Zbl 0861.31005 |
Reference:
|
[3] Bezzarga M., Bucur Gh.: Théorie du potentiel pour les systèmes semi-dynamiques.Rev. Roumaine Math. Pures Appl. 39 (1994), 439-456. Zbl 0861.31005, MR 1298884 |
Reference:
|
[4] Bezzarga M., Bucur Gh.: Duality for Semi-Dynamical Systems.Potential Theory - ICPT94, Walter de Gruyter, Berlin-New York, 1996, pp.275-286. Zbl 0861.31006, MR 1404713 |
Reference:
|
[5] Bezzarga M., Moldoveanu E., Secelean N.: Dual resolvent for semidynamical systems.preprint (accessible at: http://adela.karlin.mff.cuni.cz/katedry/kma/pt). |
Reference:
|
[6] Bhatia N.P., Hájek O.: Local Semi-Dynamical Systems.Lecture Notes in Math. 90, Springer, Berlin-New York, 1969. MR 0251328 |
Reference:
|
[7] Blumenthal R.M., Getoor R.K.: Markov Processes and Potential Theory.Academic Press, New York and London, 1968. Zbl 0169.49204, MR 0264757 |
Reference:
|
[8] Boboc N., Bucur Gh., Cornea A.: Order and Convexity in Potential Theory.Lecture Notes in Math. 853, Springer, Berlin, 1981. Zbl 0534.31001, MR 0613980 |
Reference:
|
[9] Boboc N., Bucur Gh.: Potential theory on ordered sets II.Rev. Roumaine Math. Pures Appl. 43 (1998), 685-720. Zbl 0995.31008, MR 1845086 |
Reference:
|
[10] Dellacherie C., Meyer P.A.: Probabilités et potentiel.Chap. XV, Hermann, Paris, 1987. Zbl 0624.60084, MR 0488194 |
Reference:
|
[11] Getoor R.K.: Transience and Recurrence of Markov Process.Séminaire de Probabilité XIV 1978-1979, Lecture Notes in Math. 784, Springer, Berlin, 1980, pp.397-409. MR 0580144 |
Reference:
|
[12] Hájek O.: Dynamical Systems in the Plane.Academic Press, London-New York, 1968. MR 0240418 |
Reference:
|
[13] Saperstone S.H.: Semidynamical Systems in Infinite Dimensional Space.App. Math. Sciences 37, Springer, New York-Berlin, 1981. MR 0638477 |
Reference:
|
[14] Sharpe M.: General Theory of Markov Process.Pure and Applied Mathematics, 133, Academic Press, Inc., Boston, MA, 1988. MR 0958914 |
. |