[1] Bezzarga M.:
Coexcessive functions and duality for semi-dynamical systems. Rev. Roumaine Math. Pures Appl. 42 1-2 (1997), 15-30.
MR 1650071
[2] Bezzarga M.:
Théorie du potentiel pour les systèmes semi-dynamiques. Ph.D. Thesis, Faculty of Mathematics of the Bucharest University, Dec. 2000.
Zbl 0861.31005
[3] Bezzarga M., Bucur Gh.:
Théorie du potentiel pour les systèmes semi-dynamiques. Rev. Roumaine Math. Pures Appl. 39 (1994), 439-456.
MR 1298884 |
Zbl 0861.31005
[4] Bezzarga M., Bucur Gh.:
Duality for Semi-Dynamical Systems. Potential Theory - ICPT94, Walter de Gruyter, Berlin-New York, 1996, pp.275-286.
MR 1404713 |
Zbl 0861.31006
[6] Bhatia N.P., Hájek O.:
Local Semi-Dynamical Systems. Lecture Notes in Math. 90, Springer, Berlin-New York, 1969.
MR 0251328
[7] Blumenthal R.M., Getoor R.K.:
Markov Processes and Potential Theory. Academic Press, New York and London, 1968.
MR 0264757 |
Zbl 0169.49204
[8] Boboc N., Bucur Gh., Cornea A.:
Order and Convexity in Potential Theory. Lecture Notes in Math. 853, Springer, Berlin, 1981.
MR 0613980 |
Zbl 0534.31001
[9] Boboc N., Bucur Gh.:
Potential theory on ordered sets II. Rev. Roumaine Math. Pures Appl. 43 (1998), 685-720.
MR 1845086 |
Zbl 0995.31008
[11] Getoor R.K.:
Transience and Recurrence of Markov Process. Séminaire de Probabilité XIV 1978-1979, Lecture Notes in Math. 784, Springer, Berlin, 1980, pp.397-409.
MR 0580144
[12] Hájek O.:
Dynamical Systems in the Plane. Academic Press, London-New York, 1968.
MR 0240418
[13] Saperstone S.H.:
Semidynamical Systems in Infinite Dimensional Space. App. Math. Sciences 37, Springer, New York-Berlin, 1981.
MR 0638477
[14] Sharpe M.:
General Theory of Markov Process. Pure and Applied Mathematics, 133, Academic Press, Inc., Boston, MA, 1988.
MR 0958914