Previous |  Up |  Next

Article

Keywords:
loop; group; connected transversals
Summary:
In this paper we consider finite loops and discuss the following problem: Which groups are (are not) isomorphic to inner mapping groups of loops? We recall some known results on this problem and as a new result we show that direct products of dihedral 2-groups and nontrivial cyclic groups of odd order are not isomorphic to inner mapping groups of finite loops.
References:
[1] Baer R.: Erweiterung von Gruppen und ihren Isomorphismen. Math. Z. 38 (1934), 375-416. MR 1545456 | Zbl 0009.01101
[2] Csörgö P., Myllylä K., Niemenmaa M.: On connected transversals to dihedral subgroups of order $2p^n$. Algebra Colloquium 7:1 (2000), 105-112. MR 1810601
[3] Drápal A.: Orbits of inner mapping groups. Monats. Math. 134 (2002), 191-206. MR 1883500 | Zbl 1005.20051
[4] Huppert B.: Endliche Gruppen I. Springer-Verlag, 1967. MR 0224703 | Zbl 0412.20002
[5] Kepka T.: On the abelian inner permutation groups of loops. Comm. Algebra 26 (1998), 857-861. MR 1606178 | Zbl 0913.20043
[6] Kepka T., Niemenmaa M.: On loops with cyclic inner mapping groups. Arch. Math. 60 (1993), 233-236. MR 1201636
[7] Myllylä K.: On the solvability of groups and loops. Acta Universitatis Ouluensis, Series A, 396 (2002).
[8] Niemenmaa M.: On loops which have dihedral $2$-groups as inner mapping groups. Bull. Austral. Math. Soc. 52 (1995), 153-160. MR 1344268 | Zbl 0838.20080
[9] Niemenmaa M.: On the structure of the inner mapping groups of loops. Comm. Algebra 24 (1996), 135-142. MR 1370527 | Zbl 0853.20049
[10] Niemenmaa M.: On finite loops whose inner mapping groups are abelian. Bull. Austral. Math. Soc. 65 (2002), 477-484. MR 1910500 | Zbl 1012.20068
[11] Niemenmaa M.: Finite loops with dihedral inner mapping groups are solvable. to appear in J. Algebra. MR 2032461 | Zbl 1047.20051
[12] Niemenmaa M., Kepka T.: On multiplication groups of loops. J. Algebra 135 (1990), 112-122. MR 1076080 | Zbl 0706.20046
[13] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups. Bull. Austral. Math. Soc. 49 (1994), 121-128. MR 1262682 | Zbl 0799.20020
[14] Vesanen A.: On solvable loops and groups. J. Algebra 180 (1996), 862-876. MR 1379214
Partner of
EuDML logo