Previous |  Up |  Next

Article

Keywords:
Moufang loop; Mal'tsev algebra; generalized Maurer-Cartan equations; triality
Summary:
It is explicitly shown how the Lie algebras can be associated with the analytic Moufang loops. The resulting Lie algebra commutation relations are well known from the theory of alternative algebras.
References:
[1] Moufang R.: Zur Struktur von Alternativkörpern. Math. Ann. B110 (1935), 416-430. MR 1512948
[2] Pflugfelder H.: Quasigroups and Loops: Introduction. Heldermann Verlag Berlin (1990). MR 1125767 | Zbl 0715.20043
[3] Mal'tsev A.I.: Analytic loops. Matem. Sb. 36 (1955), 569-576 (in Russian). MR 0069190
[4] Paal E.: An Introduction to Moufang Symmetry. Preprint F-42 Institute of Physics, Tartu (1987 (in Russian)). MR 1241991
[5] Loos O.: Über eine Beziehung zwischen Malcev-Algebren und Lie-Tripelsystemen. Pacific J. Math. 18 (1966), 553-562. MR 0199236 | Zbl 0145.04202
[6] Yamaguti K.: Note on Malcev algebras. Kumamoto J. Sci. A5 (1962), 203-207. MR 0158911 | Zbl 0166.04203
[7] Yamaguti Y.: On the theory of Malcev algebras. Kumamoto J. Sci. A6 (1963), 9-45. MR 0167507 | Zbl 0138.26203
[8] Schafer R.D.: An Introduction to Nonassociative Algebras. Academic Press New York (1966). MR 0210757 | Zbl 0145.25601
Partner of
EuDML logo