Previous |  Up |  Next

Article

Keywords:
quasigroup; $n$-ary quasigroup; check character system; code; the system of the serial numbers of German banknotes
Summary:
It is well known that there exist some types of the most frequent errors made by human operators during transmission of data which it is possible to detect using a code with one check symbol. We prove that there does not exist an $n$-T-code that can detect all single, adjacent transposition, jump transposition, twin, jump twin and phonetic errors over an alphabet that contains 0 and 1. Systems that detect all single, adjacent transposition, jump transposition, twin, jump twin errors and almost all phonetic errors of the form $a0\rightarrow 1a$, $a\neq 0$, $a\neq 1$ over alphabets of different, and minimal size, are constructed. We study some connections between the properties of anti-commutativity and parastroph orthogonality of T-quasigroups. We also list possible errors of some types (jump transposition, twin error, jump twin error and phonetic error) that the system of the serial numbers of German banknotes cannot detect.
References:
[1] Beckley D.F.: An optimum system with modulo $11$. The Computer Bulletin 11 213-215 (1967).
[2] Belousov V.D.: Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow, 1967 (in Russian). MR 0218483
[3] Belousov V.D.: Elements of the Quasigroup Theory, A Special Course. Kishinev, 1981 (in Russian).
[4] Belousov V.D.: $n$-Ary Quasigroups. Shtiinta, Kishinev, 1972 (in Russian). MR 0354919
[5] Belyavskaya G.B., Izbash V.I., Mullen G.L.: Check character systems using quasigroups, I and II. preprints. MR 2174275
[6] Damm M.: Prüfziffersysteme über Quasigruppen. Diplomarbeit, Philipps-Universität Marburg, 1998.
[7] Dénes J., Keedwell A.D.: Latin Squares and their Applications. Académiai Kiadó, Budapest, 1974. MR 0351850
[8] Ecker A., Poch G.: Check character systems. Computing 37/4 277-301 (1986). MR 0869726 | Zbl 0595.94012
[9] Gumm H.P.: A new class of check-digit methods for arbitrary number systems. IEEE Trans. Inf. Th. IT, 31 (1985), 102-105. Zbl 0557.94013
[10] Kargapolov M.I., Merzlyakov Yu.I.: Foundations of Group Theory. Nauka, Moscow, 1977 (in Russian). MR 0444748 | Zbl 0508.20001
[11] Laywine Ch.L., Mullen G.L.: Discrete Mathematics using Latin Squares. John Wiley & Sons, Inc., New York, 1998. MR 1644242 | Zbl 0957.05002
[12] Mullen G.L., Shcherbacov V.: Properties of codes with one check symbol from a quasigroup point of view. Bul. Acad. Ştiinte Repub. Mold. Mat. 2002, no 3, pp.71-86. MR 1991018 | Zbl 1065.94021
[13] Pflugfelder H.O.: Quasigroups and Loops: Introduction. Heldermann Verlag, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[14] Sade A.: Produit direct-singulier de quasigroupes othogonaux et anti-abeliens. Ann. Soc. Sci. Bruxelles, Ser. I, 74 (1960), 91-99. MR 0140599
[15] Schulz R.-H.: Check Character Systems and Anti-symmetric Mappings. H. Alt (Ed.): Computational Discrete Mathematics, Lecture Notes in Comput. Sci. 2122, 2001, pp.136-147. MR 1911586 | Zbl 1003.94537
[16] Schulz R.-H.: Equivalence of check digit systems over the dicyclic groups of order $8$ and $12$. in J. Blankenagel & W. Spiegel, editor, Mathematikdidaktik aus Begeisterung für die Mathematik, pp.227-237, Klett Verlag, Stuttgart, 2000. Zbl 1011.94539
[17] Verhoeff J.: Error Detecting Decimal Codes. Vol. 29, Math. Centre Tracts. Math. Centrum Amsterdam, 1969. MR 0256770 | Zbl 0267.94016
Partner of
EuDML logo