Previous |  Up |  Next

Article

Keywords:
inverse Gaussian distribution; estimation functions; uniformly most powerful test; unbiased test
Summary:
The aim of this article is to develop estimation functions by confidence regions for the inverse Gaussian distribution with two parameters and to construct tests for hypotheses testing concerning the parameter $\lambda $ when the mean parameter $\mu $ is known. The tests constructed are uniformly most powerful tests and for testing the point null hypothesis it is also unbiased.
References:
[1] Ter Berg P.: Two pragmatic approaches to loglinear claim cost analysis. Astin Bulletin 11 77-90. MR 0611038
[2] Ter Berg P.: Deductibles and the inverse Gaussian distribution. Astin Bulletin 24 2 319-323.
[3] Chhikara R.S., Folks J.L.: Estimation of the inverse Gaussian distribution function. J. Amer. Statist. Assoc. 69 , 345 2500-254. Zbl 0282.62026
[4] Chhikara R.S., Folks J.L.: The Inverse Gaussian Distribution: Theory, Methodology and Applications. New York, Marcel Dekker. Zbl 0701.62009
[5] Edgeman R., Scott R., Pavur R.: A modified Kolmogorov-Smirnov test for the inverse Gaussian distribution with unknown parameters. Commun. Statist.- Simula. 17 1203-1212.
[6] Essam K. Al Hussaini, Nagi S. Abd-El-Hakim: Bivariate inverse Gaussian. Annals of Institute of Statistics and Mathematics 33 , Part A 57-66. MR 0613202
[7] Gunes H., Dietz D.C., Auclair P., Moore A.: Modified goodness-of-fit tests for the inverse Gaussian distribution. Computational Statistics and Data Analysis 24 63-77. Zbl 0900.62231
[8] Hadwiger H.: Naturliche Ausscheidefunktionen fur Gesamtheiten und die Losung der Erneuerungsgleichung. Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker 40 31-39. MR 0004465
[9] Henze N., Klar B.: Goodness-of-Fit Tests for the inverse Gaussian distribution based on the empirical Laplace transform. Ann. Statist., forthcoming. MR 1910185 | Zbl 1012.62047
[10] Lehmann E.L.: Testing Statistical Hypotheses. New York, Wiley. MR 0852406 | Zbl 1076.62018
[11] Mergel V.: Test of goodness of fit for the inverse-gaussian distribution. Math. Commun. 4 191-195. MR 1746381 | Zbl 0946.62007
[12] Pavur R., Edgeman R., Scott R.: Quadratic statistic for the goodness-of-fit test for the inverse Gaussian distribution. IEEE Trans. Reliab. 41 118-123.
[13] O'Reilly F., Rueda R.: Goodness-of-fit for the inverse Gaussian distribution. Canad. J. Statist. 20 387-397. MR 1208351 | Zbl 0765.62051
[14] Rao C.R.: Linear Statistical Inference and Its Applications. New York, Wiley. MR 0221616 | Zbl 0256.62002
[15] Schrodinger E.: Zur Theorie der Fall-und Steigversuche an Teilchen mit Brownscher Bewegung. Physikalische Zeitschrift 16 289-295.
[16] Seshadri V.: Inverse Gaussian Distributions. Oxford, Oxford University Press. Zbl 0758.62027
[17] Seshadri V.: The Inverse Gaussian Distribution - Statistical Theory and Applications. London, Springer. MR 1622488 | Zbl 0942.62011
[18] Shuster J.: On the inverse Gaussian distribution. J. Amer. Statist. Assoc. 63 1514-1516. MR 0235653 | Zbl 0169.21004
[19] Tweedie M.C.K.: Statistical properties of inverse Gaussian distributions I, II. Annals of Mathematical Statistics 28 362-377. MR 0110132 | Zbl 0086.35202
[20] Wald, A.: Sequential Analysis. Wiley, New York. MR 0020764 | Zbl 0091.14602
Partner of
EuDML logo