[1] Aniskovič E.M.:
On subspaces of sequential spaces. Soviet Math. Dokl. 28 202-205 (1981).
MR 0646337
[2] Boldjiev B., Malyhin V.:
The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property. Comment. Math. Univ. Carolinae 31 23-25 (1990).
MR 1056166
[3] Dolecki S.:
Convergence-theoretic methods in quotient quest. Topology Appl. 73 1-21 (1996).
MR 1413721
[4] Dolecki S., Greco G.H.:
Topologically maximal pretopologies. Studia Math. 77 265-281 (1984).
MR 0745283 |
Zbl 0487.54003
[6] Dolecki S., Mynard F.:
Convergence-theoretic mechanisms behind product theorems. Topology Appl. 104 67-99 (2000).
MR 1780899 |
Zbl 0953.54002
[7] Dolecki S., Nogura T.:
Two-fold theorem on Fréchetness of products. Czechoslovak Math. J. 49 (124) 421-429 (1999).
MR 1692508 |
Zbl 0949.54010
[8] Dolecki S., Nogura T.:
Countably infinite products of sequential topologies. Math. Japonica 5 209-215 (2001).
MR 1885785 |
Zbl 0991.54028
[9] Dolecki S., Nogura T.:
Sequential order of finite products of topologies. Topology Proc. 25 (2000), 105-127.
MR 1925680 |
Zbl 1026.54021
[10] Dolecki S., Sitou S.:
Precise bounds for sequential order of products of some Fréchet topologies. Topology Appl. 84 61-75 (1998).
MR 1611269
[11] Dolecki S., Watson S.: Internal characterizations of subsequential topologies. to appear.
[12] Dolecki S., Watson S.: Maps between Arens spaces. to appear.
[14] Fremlin D.:
Sequential convergence in $C_p(X)$. Comment. Math. Univ. Carolinae 35 371-382 (1994).
MR 1286585
[15] Grimeisen G.:
Gefilterte Summation von Filtern und iterierte Grenzeprozesse, I. Math. Annalen 141 318-342 (1960).
MR 0120613
[15] Grimeisen G.:
Gefilterte Summation von Filtern und iterierte Grenzeprozesse, II. Math. Annalen 144 386-417 (1961).
MR 0131259
[17] Katětov M.:
Products of filters. Comment. Math. Univ. Carolinae 9 173-189 (1968).
MR 0250257
[18] Katětov M.:
On descriptive classes of functions. in Theory of Sets and Topology, Berlin, 1972.
MR 0345060
[19] Kratochvíl P.: Multisequences and measure. in General Topology and its Relations to Modern Analysis and Algebra, 1976.
[20] Kratochvíl P.:
Multisequences and their structure in sequential spaces. in Convergence Structures, Akademie-Verlag, 1985.
MR 0835487
[21] Nyikos P.:
Convergence in topology. in M. Hušek and J. van Mill, Eds, Recent Progress in General Topology, North-Holland, 1992.
MR 1229121 |
Zbl 0794.54004
[22] van Mill J.:
An introduction to $\beta ømega$. in K. Kunnen and J. E. Vaughan, Eds, Handbook of Set-Theoretic Topology, North-Holland, 1988.
Zbl 0555.54004