Previous |  Up |  Next

Article

Keywords:
degenerate elliptic equations; weak solutions; regularity; higher differentiability
Summary:
We prove the Hölder continuity of the homogeneous gradient of the weak solutions $u\in W_{\operatorname{loc}}^{1,p}$ of the p-Laplacian on the Heisenberg group $\Cal H^n$, for $1+\frac{1}{\sqrt{5}} <p\le 2$.
References:
[1] Capogna L.: Regularity of quasilinear equations in the Heisenberg group. Comm. Pure Appl. Math. 50 (1997), 867-889. MR 1459590
[2] Capogna L.: Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups. Math. Ann. 313 (1999), 263-295. MR 1679786 | Zbl 0927.35024
[3] Capogna L., Danielli D., Garofalo N.: An embedding theorem and the Harnack inequality for nonlinear subelliptic equations. Comm. Partial Differential Equations 18 (9-10) (1993), 1765-1794. MR 1239930 | Zbl 0802.35024
[4] Cutrí A., Garroni M.G.: Existence, uniqueness and regularity results for integro-differential Heisenberg equations. Adv. in Differential Equations 1 (1996), 920-939. MR 1409894
[5] Di Benedetto E.: $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 8 (1983), 827-850. MR 0709038
[6] Evans C.L.: A new proof of local $C^{1+\alpha }$ regularity for solutions of certain degenerate elliptic P.D.E. J. Differential Equations 45 (1982), 356-373. MR 0672713
[7] Folland G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13 (1975), 161-207. MR 0494315 | Zbl 0312.35026
[8] Folland G.B., Stein E.M.: Estimates for the $øverline{\partial}_h$ complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27 (1974), 459-522. MR 0367477
[9] Giusti E.: Direct methods in the calculus of variations (in Italian). Unione Matematica Italiana, Bologna (1994). MR 1707291
[10] Hörmander L.: Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171. MR 0222474
[11] Jerison D.: The Poincaré inequality for vector fields satisfying Hörmander's condition. Duke Math. J. 53 (1986), 503-523. MR 0850547 | Zbl 0614.35066
[12] Ladyzenskaja O.A., Ural'tzeva N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York, 1968. MR 0244627
[13] Lewis J.: Capacitary functions in convex rings. Arch. Rational Mech. Anal. 66 (1977), 201-224. MR 0477094 | Zbl 0393.46028
[14] Lewis J.: Regularity of the derivatives of solutions of certain degenerate elliptic equations. Indiana Univ. Math. J. 32 6 (1983), 849-858. MR 0721568
[15] Lu G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications. Rev. Mat. Iberoamericana 8 3 (1992), 367-439. MR 1202416 | Zbl 0804.35015
[16] Maz'ja V.G.: Sobolev Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1985. Zbl 0692.46023
[17] Marchi S.: Hölder continuity and Harnack inequality for De Giorgi classes related to Hörmander vector fields. Ann. Mat. Pura Appl. (IV) CLXVIII (1995), 171-188. MR 1378243 | Zbl 0861.35018
[18] Marchi S.: $C^{1,\alpha}$ local regularity for the solutions of the p-Laplacian on the Heisenberg group. The case $2\le p<1+\sqrt{5}$. Z. Anal. Anwendungen 20 (2001), 3 617-636. MR 1863937 | Zbl 0988.35066
[19] Marchi S.: $L^p$ regularity of the derivatives in the second commutator's direction for nonlinear elliptic equations on the Heisenberg group. in print on Accademia dei XL. Zbl 0102.20501
[20] Moser J.: On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math. XIV (1991), 577-591. MR 0159138
[21] Nagel A., Stein E.M., Wainger S.: Balls and metrics defined by vector fields I: Basic properties. Acta Math. 155 (1985), 103-147. MR 0793239 | Zbl 0578.32044
[22] Serrin J.: Local behaviour of solutions of quasi-linear elliptic equations. Acta Math. 111 (1964), 247-302. MR 0170096
[23] Stein E.M.: Singular Integrals and Differentiability Properties. Princeton Univ. Press, Princeton, 1970. MR 0290095 | Zbl 0281.44003
[24] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam-New York-Oxford, 1978. MR 0503903 | Zbl 0830.46028
[25] Triebel H.: Theory of Function Spaces. Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983. MR 0781540 | Zbl 1104.46001
[26] Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984), 126-150. MR 0727034
[27] Uhlenbeck K.: Regularity for a class of nonlinear elliptic systems. Acta Math. 138 (1977), 219-240. MR 0474389 | Zbl 0372.35030
[28] Ural'tzeva N.N.: Degenerate quasilinear elliptic systems. Zap. Nauchno Sem. Leningrad Otdel. Mat. Steklov 7 (1968), 184-222. MR 0244628
[29] Xu C.J.: Regularity for quasilinear second-order subelliptic equations. Comm. Pure Appl. Math. XLV (1992), 77-96. MR 1135924 | Zbl 0827.35023
Partner of
EuDML logo