Article
Keywords:
concrete category; optimal subset; reflexive subobject lattice; reflexive endomorphism algebra
Summary:
In this paper we study the reflexive subobject lattices and reflexive endomorphism algebras in a concrete category. For the category {\bf Set} of sets and mappings, a complete characterization for both reflexive subobject lattices and reflexive endomorphism algebras is obtained. Some partial results are also proved for the category of abelian groups.
References:
[1] Davey B.A., Priestley H.A.:
Introduction to Lattices and Order. Cambridge Text Book, Cambridge University Press, 1994.
MR 1902334 |
Zbl 1002.06001
[4] Preuss G.:
Theory of Topological Structures - An approach to Categorical Topology. D. Reidel Publishing Company, 1988.
MR 0937052 |
Zbl 0649.54001
[5] Harrison K.J., Longstaff W.E.:
Automorphic images of commutative subspace lattices. Proc. Amer. Math. Soc. 296 (1) (1986), 217-228.
MR 0837808 |
Zbl 0616.46021
[6] Longstaff W.E.:
Strongly reflexive subspace lattices. J. London Math. Soc. (2) 11 (1975), 491-498.
MR 0394233
[7] Longstaff W.E.:
On lattices whose every realization on Hilbert space is reflexive. J. London Math. Soc. (2) 37 (1988), 499-508.
MR 0939125 |
Zbl 0654.47025
[8] Longstaff W.E., Oreste P.:
On the ranks of single elements of reflexive operator algebras. Proc. Amer. Math. Soc. 125 (10) (1997), 2875-2882.
MR 1402872 |
Zbl 0883.47024
[9] Manes E.G.:
Algebraic Theories. Graduate Texts in Mathematics 26, Springer-Verlag, 1976.
MR 0419557 |
Zbl 0489.18003
[12] Schmidt R.:
Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin-New York, 1994.
MR 1292462 |
Zbl 1026.20015
[13] Raney G.N.:
Completely distributive lattices. Proc. Amer. Math. Soc. 3 (1952), 677-680.
MR 0052392