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C1@ local regularity for the solutions of the p-Laplacian
on the Heisenberg group. The case 1 + % <p<2

SILVANA MARCHI

Abstract. We prove the Holder continuity of the homogeneous gradient of the weak
solutions u € Wli)'cp of the p-Laplacian on the Heisenberg group H", for 1+ % <p<2.

Keywords: degenerate elliptic equations, weak solutions, regularity, higher differentia-
bility

Classification: 35D10, 35J60, 35J70

1. Introduction

In this paper we deal with the regularity of the weak solutions u € Wli’p (Q, X),

C
L 1
1+ 75 < p <2, of the equation

) divyy @(Xu) = 0,

where divy d(Xu) = 2%11 Xpaf(Xu) and aF(q) = [P 2q4, k = 1,...,2n.
Here  is an open subset of the Heisenberg group H™, the vector fields Xy,
k = 1,...,2n, are the generators of the corresponding Lie algebra with their
commutators up to the first order and Xu = (Xqu, ..., Xopu).

Our main object is the local Holder continuity of the homogeneous gradient X u.
To this aim we consider approximate equations and we prove the property uni-
formly for their solutions. Then we gain the result for the solutions u of the
equation (1) via a limit argument.

Let us recall the definitions of the functional spaces needed (see [7]). For any
positive integer j, let us set s = (s1,...,s;), where s; € {1,...,2n} for any
i=1,...,7, and set |s| = j.

Let us denote by X, the operator X, Xs, . ..ij. For any ¢ > 1 and any
positive integer h, W/9(H", X) denotes the set of functions f € LI(H™) such that
Xof € LI(H™) for [s| < b, with norm || fll.g = 7]l zo(ren) +5 s1<n 1 X L acren)

This work has been performed as a part of a National Research Project supported by MIUR.



34

S. Marchi

wh 9(Q, X) is the set of functions f such that ¢f € Wh(H™, X) for any ¢ €

loc

Ceo ().
We say that u € Wﬁ)’f(ﬂ, X) is a local weak solution of (1) if

(2) /Q o (Xu) Xy (p) d = 0

for all ¢ € Wl’p(Q,X) with suppp C Q. Here and in the following repeated
indices denote summation.

We can now state the main results of this paper.
From now on Q" will denote an arbitrary open subset of € such that Q ccq
and B(p), p > 0, will denote any homogeneous ball of radius p (see Section 3).

Theorem 1.1. Let u € W), ’p(Q X), 1 \/5 < p <2, be a local weak solution of

(1). Then for any o € (0,1) there exists a positive constant y(c) depending only
on ¢ and the data such that, for any homogeneous ball B(R) cC ),

1/p
) Il ey <20 (g [ X0 0)

In particular | Xu| € Lloc(Q,) and for every compact K C ', there exists a
constant Cy > 0 depending only on the data and on dist (K, BQ/) such that

”Xu”oo,K < C'0-

Theorem 1.2. Let u € W) ’p(Q X), 1+ \/_ < p <2, be a local weak solution of

(1). Then for any homogeneous ball B(R) CC Q' there exist positive constants v
and 1) € (0,1) depending only on the data and on dist (B(R),d') such that

PN\
4 Xiu<v|= X
@ s, o5n(p) X v (R)" s X

for all p < R/2. In particular Xu is locally Holder continuous in Q/, i.e. for every
compact K C Q' there exist Cy > 0 and « € (0,1) depending only on data and
on dist (K,0Q) such that

[ Xu(z) = Xu(y)| < Crd(z,y)*, =,y € K,
where d denotes the homogeneous distance associated to H™ (see Section 3).

Our results extend to the Heisenberg group setting some properties which hold,
in the Euclidean context, for the solutions of the p-Laplacian, but even of more
general nonlinear elliptic equations.
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Let us recall in particular on this subject the papers of K. Uhlenbeck [27],
N.N. Ural’tzeva [28], L. Evans [6] for p > 2, and P. Tolksdorf [26], E. Di Benedetto
[5] and J.L. Lewis [14] for 1 < p < 4o0.

In general these methods consist in differentiating the equation and proving
that the derivatives of the solutions solve another partial differential equation.

But this procedure does not fit the Heisenberg context due to the lack of
commutativity of the vector fields. In fact, even difference quotiens along any left-
invariant vector field produce derivatives in the second commutator’s direction.

If p = 2 L. Capogna [1] solved this problem for sub-elliptic equations having
the p-Laplacian as a prototype, establishing at first a control on the L2 norm
of the derivatives in the commutator’s direction. This is the key point in the
matter. Thanks to this result he could prove the differentiability of the equation
and gradient’s Holder continuity.

In [18] we proved the same result for the p-Laplacian when 2 < p < 1++/5. Here
we extend it to 1 + % < p < 2. Because of the worsening of the degeneracy, in

both cases we are forced to smooth the problem introducing regularized equations
(5) divyy de(Xue) =0

for small e > 0, where @c(q) = [(e + |¢|?)?=2)/2¢]. Following an adaptation of
Di Benedetto’s method [5] we attempt to obtain “uniform” Hélder continuity
for Xu.. However this method requires differentiability of equations (5) too, that
in turn requires a control in LP of some derivatives of u..

If p > 2 we could limit ourselves to establish an LP estimate for Tue (T is the
second commutator of the vector fields). But the case p < 2 is much more tricky.
In fact, besides the LP estimate for Tue we proved in [19], here we further need
an LP-control of the derivatives of Tu. along the vector fields. We prove this
result via an iterated application of fractional difference quotiens and repeated
inclusions between functional spaces. As this is a crucial step we treat it apart
in Section 7. The limit p > 1+ % comes from [19]. A different technique could

improve the result.

Finally we would give a brief description of the content of each section. Sec-
tions 2 and 3 are devoted to recall basic knowledge and preliminary results. In
Section 4 we prove the differentiability of equations (5). We multiply them by a
particular test function, defined by double difference quotiens and apply a Lemma
of Cutri-Garroni [4] which enables us to commute the vector fields with the dou-
ble difference quotiens. Thanks to this tool and the LP estimate of T'ue from
Section 7, we can then apply Giusti’s method [Giusti] and conclude about the
W2P local regularity for ue (see Theorem 4.1). This is enough to differentiate
equations (5).
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Thanks to this tool in Sections 5 and 6 we prove boundedness and local Holder
continuity of X;ue by the methods of Di Benedetto [5]. As these estimates are
uniform in €, this enables us to establish Theorems 1.1 and 1.2 about u by standard
arguments [13], [14], possibly up to subsequences.

The general plan of this paper is the same as of [19]. The principal differences
concern the crucial Sections 4 and 7 and part of Section 6. They are outlined in
detail.

We limit ourselves to sketch the remainder, referring the reader to [5], [18], [19]
for a closer examination.

2. Basic knowledge
The Heisenberg group H™ is the Lie group whose underlying manifold is R?*+1
with the following group law: for all x = (2/,t) = (21,...,22n,t), y = (v, 8) =
(yla s 7y2n7 S)v
zoy= (2" +y,t+s+ 20,y

where [2, '] == 3311 (Yiitn — TiYitn)-
H™ is a homogeneous group, that is a group with dilations. A norm for H"
which is homogeneous of degree 1 with respect to the dilations is

lz* = (o', 0)[* = |2/ |* + 12 for any z = («/,t) € H"

and the associated distance is

-1 1

d(I’y) = |y OI|7 T,y S Hn, Where ’y_ = —v.

B(z,r) will denote the homogeneous ball centered in z € H™ with radius r > 0.

The Lie algebra £(X) of left-invariant vector fields corresponding to H" is
generated by

Xi = Oz + 224004
Xivn = 8Zi+n — 2x,;0¢
T = —40;

for i = 1,...,n, where [X;,Xjyn] = —[Xsq4n, Xs] = T, i = 1,...,n, and
[X;, X;] = 0 in any other case.

The vector fields X; do not commute with right translations. In particular we
cannot interchange them with difference quotiens operators

w(x oh) —w(x)
1]

w(zoh™1) —w(x)
—|h|

th(:c) = ) D—hw(x) =



C1 local regularity for the solutions of the p-Laplacian on the Heisenberg group

for any x € H"™, h = (h',0), h; >0 for any i = 1,...,2n.
For any i = 1,...,2n let h*, (h*)~! be the elements of the group whose j-th
component is h;, or resp. —h;, if j =i and 0 otherwise. We have

(6) XiDipi = DypiXi

for every i =1,...,2n, but Xy Dy # Dypi Xy if k # 4.
For any s > 0 let k%, (h¥)~! be the elements of the group whose (2n+41)-th

component is s or —s respectively and 0 otherwise. For any s > 0 and any
€ (0,1) let

w(x o 1) — w(a)

wiwo (1)) —w(x)

_SO!

D w(z) = » Dopy (@) =

For every i = 1,...,2n we have
(7) XiDipx , = Dipr  Xi.

3. Difference quotiens and a priori bounds

For more details on this argument see also [4], [1]. Let us consider any w €
C§°(Q) and any h = (h/,0) = (h1,..., hap,0) with h; >0 fori=1,...,2n.

Remark 3.1. It is easy to show that

2w(x) — w(x oh) —w(xoh™t)

(8) D_pDpw(x) = e

= DhD_hw(x).

Remark 3.2. For any function w € LP(Q2) with compact support w C €, for any
fe Lp/(p_l)(Q) and for any h such that |h| < d(w, 98) we have

loc

9) /fDihwdx = —/wD:Fhfdx.

Lemma 3.3 (see [4, Lemma 2.7], [18, Lemma 3.3]). For any w € C§°(2) and for
anyt1=1,...,n,

(10) X;(D_pDyw()) = Dy Dp(Xiw(a)) - ;‘(;lz [(Tw)(@oh) - (Tw)(zoh ™),

(11)  Xipn(D_pDpw(z))

= DD (Xi0@)) + gt (Tw) (o ) = (Tw)a o h1),
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Lemma 3.4 (see [4, Lemma 2.9], [18, Lemma 3.4]). For any w € C§°(2) and for
any1=1,...,2n,

12 lim D piw = Xyw.
(12) i, D = Xjw

Lemma 3.5 ([1, Proposition 2.3]). Let p > 1 andlet ¢ € L} (Q) and g € C§°(12)
with w = suppg CC Q. Let i € {1,...,2n}. If there are some constants ey > 0
and C' > 0 such that

(13) sup / |Dypitp|P do < CP
0<h;<ep Jw

then X;¢ € LP(w) and || X;||pp(wy < C. Conversely, if X;1 € LY (), then (13)

holds for any w = suppg CC Q, g € C5°(Q) and C' = 2||X;9)||1p(.). The same
result holds if we substitute D ,; and X; by Dj:h: ) and 0Oy, respectively.

Lemma 3.6 (see [1, Theorem 2.6], [19, Lemma 3.6]). Let ¢ € C*°(Q) and let
g € C3°(w), with suppw CC €. Then there exists a positive constant C' such
that, for any small eg > 0 and any p > 1

swp [ D (0o)? da

0<s<eq
(14) 2n
<y s [ IDuwopdet sw [ Dol
i=1 0<h;<eg JQ 0<h;<eg JQ

From Lemmas 3.5 and 3.6 we easily deduce

Corollary 3.7. Let the assumptions of Lemma 3.6 hold true. Then there exists
a constant C' > 0 such that, for any small ¢g > 0 and any p > 1

(15) swp [ D (o)l do <€ [ [X(wg)?
0<s<eo JQ =1/2 Q

4. Wli’f regularity for the solutions of the approximate equation

This section is devoted to prove the W?2P local regularity of the solutions of
equations (5) and, as a by-product, to differentiate equations (5). This will be a
basic tool in order to apply the Di Benedetto’s machinery [5] to obtain uniform
boundedness and Holder continuity of Vue (see Sections 5, 6).

Here we will exploit a local WP estimate of T'ue whose proof can be found in
Section 7.
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Theorem 4.1. Let 1+ % < p <2 and, for any € € (0,1), let ue € Wléf(ﬂvX)
be a local weak solution of (5).
Then ue € VVlz’p(Q, X) and, for any Q" cc €

ocC

/ VP X2 P de < O(Q,9 ¢, He,p),
Q/l

where He = [oy (V& 4 |ue|P) dz and V2 = e+ | Xue?

PRrOOF: For notational simplicity we will drop the subscript € and denote the
solution of (5) by u. We briefly recall some piece of notation used in the previous
sections; for any € > 0 and for any z € R?™ we will denote

V2(z) = e+ |2,

Wi (2) = € + | Xu(z)* + | Xu(z o )2,
0) = Xu+ 6h; Dy Xu,
Z]ZLZ (6‘) = Xgu+ 0h; Dy Xpu.

Let B(3R) be a homogeneous ball of radius 3R such that B(3R) C Q. For
an arbitrary ¢ = 1,...,n, let ¢ = —(D_piDyi + D_pitnDpitn + DypiD_pi +
DpitnD_pitn)w, where w = g'2u and g is a cut-off function between B(R) and
B(2R). Let us observe that the existence of cut-off functions in the Heisenberg
group follows from standard methods whenever one observes that the horizontal
gradient of the gauge distance has length less or equal than 1 (this is a trivial
computation from the definition in Section 2). Let us recall that h; is always
assumed to be nonnegative.

In [19] we proved Tw € L},
paper). Thanks to this fact and to Lemma 3.3 we obtain ¢ € Wol’p(Q,X); this
makes ¢ a right test function for equation (5).

Let us multiply equation (5) for the test function ¢. On account of Remark 3.2
and Lemma 3.3 we obtain

(Q') (see Theorem 7.1 in Section 7 of the present

2n 2n
0= Z/ Dihiak D p:i Xpw dx + Z/ Dihi+nak D pitn Xpwdx
k=179 k=179
(16) . .
—|—/ {Dihia“‘" — Dihi+na’] Twdzx
Q
=1+ 1 + I3,

where £ in I1, I3 and I3 means the sum of the terms corresponding to both the
signs. Let us observe that D_ ak D ;i Xpw denotes the product of the functions

Dihiak and Dy ;: Xpw. Here and in the following we omit the parentheses for
sake of simplicity.
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Estimates of I; and I5. Let us observe that, for any i,k =1,...,2n

Dhla = —/ F(Xu+ 0h; DyiXu)df

= /0 ](Xu—|—9h,'DhiXu)Dhinud9

= OzZ‘ZthX]’UJ

. 1
where ai{ = / a? (Xu+ 6h; Dy Xu)df and the sum over j is understood even
0

if not explicitly written. Here a? denotes the derivative of a¥ with respect to its
j-th variable.
Using the previous notation we have

(18) b (M) = (p - VP 4 VPR (g
where d;; = 1 if k =1 and d3; = 0 if k£ # j. An easy calculation gives
2n ) )

(19) > di (") Dy Xju Dy Xju > (p— VP2 (") | Dy Xl

k,j=1

In virtue of (17) and (19) we easily obtain

2n
> Dyia¥ Dy Xpu = Z o Dy Xju Dy Xju
(20) k=1 k,j=1

>c/ VP=2(z1")d | Dy X,
By [9, Lemma 8.3] we have
1 i 9
(21) /0 VP2 do > W,

Hence, from (20) and (21) we have

2n
(22) Z Dhiak Dy Xpu > CW;;-_2 |Dyi Xul?.
k=1
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Let us observe that

(23) DyiXpw = g'2Dyi Xpu + 12 g* XpuDyig
+ 12911 DyiuXyg + 12911 uDy: X9 + 132uglo DyigXgg.

Then, from (22) and (23) we obtain
2n
Z/ DhiathikadI > c/ 912W£i_2 |Dh¢Xu|2d:1:
k=179 o
11 k _ Up kD,
(24) —|—12/ g " Djia Xkuthgd:Z:—FlZ/ g " Dpia”Dyiu Xpgdx
Q' Q'

—|—12/ glluDhiCLthingdI —|—132/ glOUDhia,thingdCC
Q' Q'

=J1+Jo+J3+ Jyg+ J5.

Estimate of Jo,...,J5. Let us observe that, for any k,j =1,...,2n,

(25) o] < ewP2,

s . . _ p+(p=2)
On account of (17), (25), Holder inequality and the decomposition p—1 = ==
we have

|Jo| = 12] /Q/ gllafj Dyi X ju Xpu Dyig d
-1
(26) <c [ g WL X ull Dyisl da
<6 . gle}IL’i_2|DhiXu|2dac+C(5_1 /Q 9" WP | Dyig|? da.

As for h; < R
(27) / W}I;i dz < / VP dx,
Bar Bsr
it follows from (26) and (27) that
2| < ; “|DpiXul|®dr 46T R .
(28) | Ja| 5/ g2WP Dy Xul?dz + 6 7'R 2/ VPd
Q/ /

Q

We choose another suitable approach to estimate |J3]|, |J4| and |J5].
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To this end, let us observe that for any i,k =1,...,2n
(29) Dyiak = h%/ol V ga®(Xu(z o 5pht)) - ' db
= /1 X;aF (Xu(z o dght)) db = Xialfﬂ-
where the functions a = fo (Xu(x o 5yh?)) dh can be estimated as

(30) |aﬁi| <Y, = /01(6 + | Xu(zo 69hi)|2)p771d9.
On account of (6), (29) and Remark 3.2 we have
Jg= —12 /Q af X;[g" DyiuXy.g) do
(31) = —12 /Q af Dy Xu gt Xy g dz
—12 /Q af; Dpiu (11 g"X;9X g + g1 X; Xy g] do
and then, by (30)
(32) | 3] < cR_l/Ql gHYhi|DhiXu|dz—|—cR_2/ g1V, | Dpiul da.

Bar

The first integral on the right-hand side of (32) can be estimated taking into
account the following decomposition

2—p

p=2
Ry Dy Xul = R™gM YW, 2 W, 2 | Dyi Xul
(33) < 69" WE 2| Dy Xul? + 6T R™2g10V 2 W2 P

_pP_
< 89" WE 2| Dy Xuf? + 6T R™2g1O (WP, + YR,

To estimate the second integral on the right-hand side of (32) let us observe at
first that

_p_
(34) Vil Dpiu| < (| Dpaul? + V2.

Moreover

p_
(35) / g'o Yh’fl dx
B(2R)

/ / O (14 | Xu(z o 6pht)|? )2 d:c}dtg/ VP dx.
B(2R B(3R)
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From (27), Lemma 3.5 and (32), ..., (35) we finally obtain
(36) |J3] < 5/9/ g 2WP 2Dy Xul? de +cR_2/Q/ VP d.
Analogously we have
Jy= —12 /Q af: X;lg" u Dy Xp.g) dz

(37) = —12 /Q af; Xjug't Dyi Xpg do

—12 /Q af; u[11'X;9 Dy Xig + g X;Dpi Xp.g] do
and then, by (30)
(38) |J4| <12R~2 /Q g1, | Xu| de + 144R_3/Q, g0V, ud.
Estimating as in (34), (35) we finally obtain
(39) | 4] < cR_3/Q, (VP + |ulP) d.
The same holds for | J5|:

(40) | J5| < cR_3/ (VP + |ulP) d.
Q/

From (22), (28), (36), (39), (40) and choosing ¢ small, we obtain that there
exist some positive constants ¢ and ¢ such that

2n
(41) > / Dy,ia* Dy Xjw dz
=179
> c/ gle}fi_2|DhiXu|2 dr — c,R_3/ (VP + |ulP) da.
Q Q
An analogous result can be obtained switching between h* and —h*. In conclusion

there are some positive constants ¢ and cl, possibly different from those in (41),
such that

2n
(42) L=)_ / D piaf D pi Xpw dz
Q/
k=1

> C/Q' 912W£;3|Dih¢Xu|2dz —¢R73 /Q’ (VP + |uP) de.

The estimate of Io proceeds exactly in the same way.
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Estimate of Is. By Theorem 7.2, we have Tw € Wﬁ)’f(Q/, X) and
/ \XTwlP dz < C(e, R, H, p)
Q/

for a certain positive constant C' depending on ¢, R, H, p. This inequality and
the methods applied to Js, ..., J5 give now

(43)

/ Dy, aTw dx
Q/

< c/ﬂ/ |a;;'"| | X Tw|dx

< c/ Y},i| XTw|dx < C(e, R, H, p)
Q/

for some other constant C'(e, R, H,p) > 0. The other three terms of I3, that is
fQ/ D_hiaH'"Tw dz, fQ/ D, pitna'Tw dz, er D_i+na'Twdz can be estimated
in the same way. So we obtain

(44) I3 Z _0(67R7 Hap)

From (42), the analogous estimate of I3 and (44) we finally obtain, for any
i=1,....2n,

(45) / gSW2TP Dy Xul? dr < C(e, R, H,p).
Ql

If 2a = p(p — 2) then, for any i = 1,...,2n
(46) |Dpi XulP = WEW, @ Dpys XulP < WP+ WP2|Dyi Xul.
Inequalities (46), together with (27) and (45) enable us to affirm that, for any
1=1,...,2n
D;i X is bounded in LP(B(R)).

By Lemma 3.4, possibly up to a subsequence, D;; Xu converges in L{JOC(B(R)) to
X;Xu for b — 0 and then u € W2P(B(R), X).

Moreover we can extract from it a subsequence converging a.e. z € B(R). By
Lemma 3.4

Whi — (e + 2|Xu|2)1/2 a.e. x € B(R) as ht — 0.
The proof of Theorem 4.1 is then finished passing to the limit A* — 0 in (45)

on account that Q" can be covered by a finite number of balls B(R) for R small
enough. O

Remark 4.2. We would like to point out that, thanks to Theorem 4.1, we can
now differentiate formally equations | a? (Xue) Xppo =0along X;,i=1,...,2n,
obtaining

(47) /B(R) al ;(Xue) X XjucXppdz = 0

for any € Wy P(B(R), X), B(R) c ©!'.
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5. Local boundedness of the gradient

Here we are concerned with the uniform, local boundedness of ue and Vu, (see
Propositions 5.1, 5.2, for the proofs we refer to [3] and [18] respectively).

We point out that the proof of Theorem 5.2 insists on the differentiability
of equations (5), proved in Theorem 4.1, so its validity is limited to the range
1+ % < p < 2. However Proposition 5.1 holds for any p > 1.

Let us observe that Theorem 1.1 is an easy consequence of Theorem 5.2, stand-
ing its uniform validity, via a standard limit argument ([13], [14]).

Proposition 5.1 ([3, Theorem 3.4]). Let p > 1. For any compact K C Q'
there exists a constant C' > 0 depending only on the structural constants and on
dist (K, Q') such that

”ue”oo,K < C

for all e > 0.
Let 2o € Q' be arbitrary fixed and, for any p > 0, let B (p) be the ball centered
at xo of radius p. Let B(R) cc Q.

Theorem 5.2 ([18, Theorem 5.2]). Let 1+ % < p <2. For any o € (0,1) there

exists a constant v(o) depending only on the structural constants and o such that
1
e + 1 X uel*)ll o0, B(r—0 S”Y(U)—/ le + | Xue /% da
el Hloo,B(R-oR) |B(R)| JB(R) ‘

for all € > 0.

Although the proof of Theorem 5.2 is referred to [18, Theorem 5.2], we want
to underline its dependence on the differentiability of equation (5). In fact it is
accomplished substituting in (47) the test function ¢ = X;ucV. g2, a > 0, where
g is a cut-off function between B(R — oR) and B(R), ¢ € (0,1), and applying
standard methods.

6. Local Hélder continuity of the gradient

Our purpose is to establish the Holder continuity of Xu. at xg, uniformly in
€ > 0. The technique is due to [6], [5], with few adaptations due to [17].

We will not deal with all the proofs in depth. We will mostly refer to [5], even
if we will discuss all needed modifications in details. We outline that Proposi-
tion 6.1 holds true for any p > 1, while the validity of Propositions 6.2, 6.4 and
Theorem 6.5, which depend on the results of the former section, is limited to the
rangel—l—% <p<L2

Let us observe that Theorem 1.2 easily follows from Theorem 6.5 via a standard
limit technique (see [13], [14]).

The following result can be found in [3, Theorem 3.35].
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Proposition 6.1 (Local Hélder continuity of uc). For any compact K C €
there exist constants C, 8 € (0, 1) depending only on the structural constants and
dist (K, Q") such that

lue(z) — ue(y)| < Clz —y|®, z,y € K,
for all e > 0.

As before let zg be an arbitrary point of 0 and, for any p > 0, B(p) be the ball
centered at xg of radius p. We will choose R > 0 in such a way that B(2R) C Q.

Let us now set p = +(X;uc —k)T&2 in (47), for k € Rand i = 1,...,2n, where
¢ is a cut-off function with support in B(R). We easily obtain

(48)/ VP X (Xiue — K)=P 2 dr < / VP2 (Xjue — k)EPXEP do
B(R) B(R)

for all € > 0, where V.2 = ¢ + | Xuc|? and v is a structural constant independent
on €, R.

Let us observe that, due to Theorem 5.1 and the results of [1], the solutions u.
are now smooth. Therefore, for any p < R, € > 0, we can set

pe(p) = max sup |Xjue|
" Blp)

we(p) = maxoscp(y) Xile.
7

Proposition 6.2. Let 2p < R. Set

Then there exists a positive constant Cy depending only on the data but inde-
pendent of €, R, )\, such that, if for some 1 < i < 2n

{o € B(2p) | Xiue < A}| < Co |B(20)]

then )
Xiue > 1 Vz € B(p).
Analogously if
{z € B(2p)| Xiue > —\}| < Co | B(2p)|
then

A
Xiue < 1 Vz € B(p).

PRrROOF: We will drop the subscript e. As in [5, Proposition 4.1] we distinguish be-
tween € > A2 and e < A2. In the first simpler case the proof is easily accomplished
using (48) as in [5, Proposition 4.1]. Let now € < \2.
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Lemma 6.3. Let v = | X;ulP/2sign X;u. Then
(49) [ X de < hdlon 4y,
B(r—or) ’

for any o € (0,1), r < 2p, h < hg = MP/2 and for a suitable positive structural
constant vy, independent on ¢, v, o, h, where A, =~ =:{x € B(r) |v(z) < h}.

PROOF OF LEMMA 6.3: We refer the reader to [5, Section 4] for the details of
the proof. Here we recall only the main steps of it for convenience of the reader.

If we set in (47) the test function ¢, = —[(|X;u| +7)P~2X;u — k] ~€2, k € RT,
where 7 is a small positive number which will be let tend to 0 and £ is a cut-off
function with support in B(p), then we obtain

(50) / VP2 X (0 — k200 ) 1262 da
B(p)

<y / (X uP~2X 0 — k)~ 2| X[ da
B(p)

where v := |Xiu|p/ 2sign X;u, for a structural constant 4 independent on e. From
(50), recalling the definition of A we deduce for any r < 2p,

(51) AP2 /B( )|X(v T2 da

<4 / (X uP~2X 0 — k)~ 2| X[ da
B(r)

for a new constant  independent on ¢, 7, o. If we choose k < A?~1 in (51) and
denote by h any number such that h < hg = AP/2, then we obtain (49).

Let us now continue the proof of Proposition 6.2.
Let H = supp(ay) (v — hg)~. Let us observe that if H < %, then X;u > %,

for any « € B(2p). Therefore we may assume H > %. For any integer 7 > 0 let

p H 1
(52) 5 p+ Y j 0 1 ( 2])7
BJ = B(T‘j)’ AJ = A]:j,Tj7 M.? = |Af_Lj,'r‘j|'

If we set in (49) h = hj, 7 = rj, 7 — or = 111, for an arbitrary j > 0, then we
obtain

K2
(53) / X(0—hy)~Pde < 0220010y
B p

J

47
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Let s € (p, é’—?p). Applying Poincaré’s inequality [15] to the function (v — h;)-¢,
where ¢ is a cut-off function between B; 9 and Bj1 we have, on account of the
doubling property,

oy - hjrasczx)l/s

. 1/p
<eo( [ eemypacere [ jeenypas) s
Aj+1

J+1

By Holder inequality, (53) and (54) we obtain
(55)

H _
W|Aj+2| S/ |(v—hj)"|d

Jj+2
< / (0 — )~ €° dm)V/s Ay 115
Ajp
—2 p/2 2—p
<ep([ 1X(0—hy) P de)P? |4y
Aj+1

2 [ o=y B A Y
41

Selp([ X hy)Pde) V2 g B

j+1
#2 ([P ) B Ay
Ajp
< 2 H|A; P |B(p) TP Ay

from which we obtain for any j > 0

[Aj12 4-( 4] >1+X
56 <c2¥ J
6) B() B(r)
where y = % — % > 0. In particular (56) gives for any [ > 1
1+x
| Al sy(—1) [ [A20-1)!
57 <c(2 _ .
o7 B0 = TBo)

It follows from (57) and [12, Lemma 4.7, p.66] that there exists a positive con-
stant Co depending only on ¢ and b = 2% such that, if |[Ag| < Co|Byl|, then
lim;_, o Ag; = 0, which implies [{z € B(p) | X;u < #H =0, and then X;u > %
for any « € B(p), so Proposition 6.2 is proved. (I
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Proposition 6.4 ([5, Proposition 4.2], [18, Proposition 6.4]). Let 2p < R. If
the assumptions of Proposition 6.4 fail, then there exists a positive structural
constant oy € (0,1) independent on e, p, such that

1e(p/2) < oopie(2p).

Theorem 6.5. There exist positive constants v and n € (0,1) depending only
on the data and dist(B(R),d9') such that

ose () Xite < ()" S |Xud, 0= 1.

for every 2p < R and every € > 0.

PROOF: The proof is the same as that of [5, Proposition 4.3] using a result of
[17]. Here we limit ourselves to describe the general idea of the proof and we refer
the reader to [18] for any details.

We prove the existence of positive structural constants a € (0,1), dg and og
independent of € such that, for all small p > 0, if the subset of B(p) where Xu,
degenerates is “small”, then the equation behaves in B(p) as a nondegenerate
elliptic equation (see Proposition 6.2). In this case, by [17, Theorem 2.1], we
obtain we(p/2) < dgp©.

On the other hand if Xue degenerates in a “thick” portion of B(p), then we
have ue(p/2) < ue(2p) (see Proposition 6.4).

The Holder continuity follows from both cases by a standard iteration tech-
nique [12].

O

7. Estimate of Tu,

In this section we prove that, for any 1+ % < p < 2, the local weak solutions
ue of equation (5) satisfy Tue, XTue € LfOC(Q/). Just as before, Q' will denote
an arbitrary open bounded subset of €2 such that Q' cca.

Theorem 7.1 ([19, Theorem 1.1]). Let 1+ % < p <2 and, for any € € (0,1),

let ue € V[/li’f(ﬂ, X) be a local weak solution of (5). Let B(3R) be an arbitrary
homogeneous ball of radius 3R such that B(3R) C Q' and let g be a cut-off
function between B(R) and B(2R). Then T(g*uc) € LP(Q') and

(58) |t de < cR [ (7 4 jucp) do

where V2 = € + | X u|?.
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Theorem 7.2. Let the assumptions of Theorem 7.1 hold. Then T(g%u.) €
WlP(Q', X) and

loc

(59) | KT u0p do < (R Hep)

where He = [y (V& + |uelP) dx and V2 = e+ | Xue?

ProOOF: From Lemma 3.5 and Theorem 7.1 we easily deduce for any small s > 0

(60) [ 1ss, g w0l do < P20 (R Hep)

Let us multiply the equation (5) by the test function ¢ = D_p« s (10D, s Ue)-

Let us observe that ¢ € VVO1 P(Q, X). In the following we will drop the subscript
e for the sake of simplicity. On account of (7) and Remark 3.2 we obtain

k 10 k 9 _
(61) /Q’ Dh:,uza q Xth:’l/zudszlO /Q/ Dh:,uza Dh:’l/zug ngd:c =0.

For any p > 1 the first integral on the left-hand side of (61) can be estimated by
the same argument we applied to Jo in Section 4: as

kK ) ,
(62) Dhs,1/2a = ah:yl/zDhsJ/zX]u
where ai{ = 01 ab(Xu+ 052Dy Xu)df, then we have
5,1/2 J 5,1/2
k 10 10 y7/p—2 2
* * > *
03 [ Dip et XDy udoze [ g OWEDy | Xl ds

where W}%* (z) = e+ | Xu(z)|]? + | Xu(x o hE) 2.
Let us now estimate the second integral on the left-hand side of (61). As

1/2
|S / Dh:,1/2Xu| S 2Wh§,

we obtain, for v = 2%1),

(64) |/Q, Dy 1/2ak Dy 1/2ug9Xk9d$|

-2 9
S/Q, Whe “1Dnr |, Xul | Dps | ulg”| Xpglda
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P—2+7 —v/2 1—y 9
< C/Q/ Wy~ 's / 1Dy, Xul™ | Dpy |, ul 7| Xpgl dz

(by Young’s inequality with exponents 5 f and p)

<6 /Q g"0 W££2|Dh;1/2Xu|2d:c

+eR 5 [ (1Dhe, (g0 + P Dy, ,o'P)s TP o
(on account of (60))

<4 /Q g0 W££2|Dh:1/2Xu|2d:c
+ 67 tsP7IC(R, H, p).

Hence, on account of (63) and (64) with small §, (61) gives

(65) /Q , glow}f;jzwh;lmxuﬁ dz < s"1C(R, H, p).

If 20 = p(2 — p) and ¢ = W then, by Young’s inequality with exponents

3= and %, (65) gives

10 10 -
/Q/g |Dh:’1/2Xu|pd:c:/Q,g W’%Wh;'DhZ,uzprdI

29 —2q _
< cs2-p glOWp* dr+s » ngp* 2|Dh* XulP dx
Q/ hs Q/ hs s,1/2

p(p—1)

<s 2 C(R,H,p)

from which we deduce

p(p—1)

| 1u, X (@O0 do < 555 R )

and hence

(66) / Dpe X (g"u)P do < C(R, H,p).
Q/ s,p/2

Let us now recall some basic definitions and relative properties we will need in
the sequel.

For p > 1 and fractional [ > 0, let w"P denote the completion of D(R) with
respect to the norm

1/p
lellute = ([ Nsplt g, 1617100 a5
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Here Asp(t) := ¢(t + s) — ¢(s), [I] and {I} are the integer and fractional parts
of 1, respectively. Further WP denotes the completion of D(R) with respect to
the norm ||| ,.p + [|ull e

If F denotes the Fourier transform in the real variable ¢, then for I € R we
define the fractional derivative of ¢ as

O =FLgl*Fyp

and we denote Lip := F~1(1 4 [¢]?)/2Fp. For p>1and [ > 0, let h-P and HP
denote the completion of D(R) with respect to the norms

lellpee = 1F M e Folle o el = 1F 7 A +1€%)2F el o

respectively. Let us observe that
(67) (Lp7 Wl’p)l-‘r'r,oo - whe

for 0 <l <1, p>1andsmall 7 > 0 (see [24, Theorem 1, p.64; (1), (4), p.25;
(11), p. 189]) where (L”,Wl’p)g,OO ={p € LP : supg<|s|<q W < oo},
and

(68) wh? < pbP

for i >0,1<p <2 (see [16, Theorem 7.1.3-1]).

Now we can continue the proof of Theorem 7.2. The following lemma
holds true.

Lemma 7.3. Let n, w € Cg°(?) and let p > 1,0 <1 < 1. Then

(69) InX @)l o ey < eI 0X0) | ey

We omit the proof of Lemma 7.3 because it obviously follows from an important
result due to Capogna [2, Theorem 2.12] in the more general Carnot group setting.
Let us observe that even if the proof of Capogna is accomplished for p = 2, still
it works alike for p # 2.

From (66), (67), (68) and for 1 + f < p <2 and small 7 > 0 we obtain

(70) 10727 X (40 C(R,H,p)

DI

and then, by Lemma 7.3

(71) 1X@* (g I, o, < C(RH.p).
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From Corollary 3.7, (67) and (68) we deduce

(72) 10127 o)l g < 11X ()

p p
||LP(Q ||LP(Q/)

for any n, w € C(‘)X’(Q/) and small 7 > 0. From (71) and (72) we deduce
1/2— 2—
(73) 10277 (@ (g 0) | oy < C(R, H,p).
As in virtue of Theorem 7.1
2—1
(74) 107277 (00| gy < C(R, H,p)
then from (73) and (74) we obtain (see [23, Lemma V-3.2.2, p. 133])
1/2—1 2—T1
7T @ () o) < C(R. H.p)

and then 2 1o
1022772y (@ ) ey < O(R.H.p).

As in virtue of Theorem 7.1, ”52/2—7(910@””(9,) < C(R,H,p), then

(75) 1D (G100 oy < C(RH,p).

Asforqz7°>1,l—%2m—l

Q

HY"(R) ¢ H™(R)

(see for example [24, (15), p. 206]), we deduce from (75)

17(6" )| gy < C(R. H.p)
whenever p—gl — 27 — % > —%. In particular for 1 + % < p < 2 and small 7 we
obtain
||T(glou)HL2(Q’) S O(Ra Ha p)
and then, by Lemma 3.5 also
10,2
(76) | 1s (@)t < (R 1.p)

for any small s > 0.
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At this point let us set ¢ = D_p+ 1(gqu ,u) in equation (5) and repeat the
machinery from (61) to (63) obtaining

(77) / Dy a¥ g' XDy ud:ch/ 912W}€*_2|Dh* Xul? de.
Q/ s,1 s,1 Q/ s s,1

In virtue of (76), the second term on the left-hand side of (61) can now be
estimated as follows

| /Q, Dh;’lak Dy jug Xpgdz|

-2
< [ WEZ2IDus, Xul Dy ul g™ X do
(78)
<

Q
5 [ 02 WEADn Xul? + CR267 [ g OWEADy Xuf da
< 5/9, gPWP2 Dy Xuf? + 67 P 2C(R, H,p).
Hence (76) and (77) give now for small § > 0
(79) /Q g W% Dy Xul? dz < C(e, R, H,p).
If 2a = p(p — 2), then
(80)  [Dpx, XulP = WRW, % |Dy: XulP < WP, + W, Dy: | Xul.

It follows from (79) and (80) that for any i = 1,...,2n, Dp= X;u is bounded
in LP(B(R)) and thus, possibly up to a subsequence, it converges in LP (B(R))
to TX;u as s — 0 and a.e. in B(R). So, since T commutes with X;, Tu €
WLP(B(R), X); moreover the limit s — 0 on (79), (80) gives

/Q, 9"2|Dps  XulP dz < C(e, R, H, p)
and then, by Lemma 3.5

/Q/ g2 |[TXu|Pdx < C(e, R, H,p)
from which we easily deduce

| KT dr < Ce R 1)

and the proof is concluded. O
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