Previous |  Up |  Next

Article

Keywords:
vector integral equations; discontinuity; multifunctions; operator inclusions
Summary:
We deal with the integral equation $u(t)=f(t,\int_I g(t,z)u(z)\,dz)$, with $t\in I:=[0,1]$, $f:I\times \Bbb R^n \to \Bbb R^n$ and $g:I\times I\to[0,+\infty[$. We prove an existence theorem for solutions $u\in L^s(I,\Bbb R^n)$, $s\in \,]1,+\infty]$, where $f$ is not assumed to be continuous in the second variable. Our result extends a result recently obtained for the special case where $f$ does not depend explicitly on the first variable $t\in I$.
References:
[1] Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkhäuser, Boston, 1990. MR 1048347 | Zbl 1168.49014
[2] Banas J., Knap Z.: Integrable solutions of a functional-integral equation. Rev. Mat. Univ. Complut. Madrid 2 (1989), 31-38. MR 1012104 | Zbl 0679.45003
[3] Cammaroto F., Cubiotti P.: Implicit integral equations with discontinuous right-hand side. Comment. Math. Univ. Carolinae 38 (1997), 241-246. MR 1455490 | Zbl 0886.47031
[4] Cammaroto F., Cubiotti P.: Vector integral equations with discontinuous right-hand side. Comment. Math. Univ. Carolinae 40 (1999), 483-490. MR 1732487 | Zbl 1065.47505
[5] Emmanuele G.: About the existence of integrable solutions of a functional-integral equation. Rev. Mat. Univ. Complut. Madrid 4 (1991), 65-69. MR 1142550 | Zbl 0746.45004
[6] Emmanuele G.: Integrable solutions of a functional-integral equation. J. Integral Equations Appl. 4 (1992), 89-94. MR 1160090 | Zbl 0755.45005
[7] Fečkan M.: Nonnegative solutions of nonlinear integral equations. Comment. Math. Univ. Carolinae 36 (1995), 615-627. MR 1378685
[8] Hewitt E., Stomberg K.: Real and Abstract Analysis. Springer-Verlag, Berlin, 1965.
[9] Himmelberg C.J., Van Vleck F.S.: Lipschitzian generalized differential equations. Rend. Sem. Mat. Univ. Padova 48 (1973), 159-169. MR 0340692 | Zbl 0289.49009
[10] Kantorovich L.V., Akilov G.P.: Functional Analysis in Normed Spaces. Pergamon Press, Oxford, 1964. MR 0213845 | Zbl 0127.06104
[11] Klein E., Thompson A.C.: Theory of Correspondences. John Wiley and Sons, New York, 1984. MR 0752692 | Zbl 0556.28012
[12] Lang S.: Real and Functional Analysis. Springer-Verlag, New York, 1993. MR 1216137 | Zbl 0831.46001
[13] Naselli Ricceri O., Ricceri B.: An existence theorem for inclusions of the type $\Psi(u)(t)\in F(t,\Phi(u)(t))$ and application to a multivalued boundary value problem. Appl. Anal. 38 (1990), 259-270. MR 1116184
[14] Scorza Dragoni G.: Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variabile. Rend. Sem. Mat. Univ. Padova 17 (1948), 102-106. MR 0028385 | Zbl 0032.19702
[15] Villani A.: On Lusin's condition for the inverse function. Rend. Circ. Mat. Palermo 33 (1984), 331-335. MR 0779937 | Zbl 0562.26002
Partner of
EuDML logo