Previous |  Up |  Next

Article

Keywords:
Peano derivative; generalized Peano derivative; Laplace derivative; Laplace transform; Tauberian theorem
Summary:
A function $f:\Bbb R \rightarrow \Bbb R$ is said to have the $n$-th Laplace derivative on the right at $x$ if $f$ is continuous in a right neighborhood of $x$ and there exist real numbers $\alpha_0, \ldots, \alpha_{n-1}$ such that $s^{n+1}\int_0^\delta e^{-st}[f(x+t)-\sum_{i=0}^{n-1}\alpha_i t^i/i!]\,dt$ converges as $s\rightarrow +\infty$ for some $\delta>0$. There is a corresponding definition on the left. The function is said to have the $n$-th Laplace derivative at $x$ when these two are equal, the common value is denoted by $f_{\langle n\rangle }(x)$. In this work we establish the basic properties of this new derivative and show that, by an example, it is more general than the generalized Peano derivative; hence the Laplace derivative generalizes the Peano and ordinary derivatives.
References:
[1] Bullen P.S., Mukhopadhyay S.N.: Properties of Baire$^\star$-1 Darboux functions and some mean value theorems for Peano derivatives. Math. Japon. 36 (1991), 309-316. MR 1095745 | Zbl 0726.26002
[2] Doetsch G.: Handbuch der Laplace-Transformation. Vol. 1, Birkhäuser Verlag, Basel, 1950. MR 0344808 | Zbl 0319.44001
[3] Fejzić H.: The Peano derivatives. Doct. Dissertation, Michigan State University, 1992.
[4] Fejzić H.: On generalized Peano and Peano derivatives. Fund. Math. 143 (1993), 55-74. MR 1234991
[5] Fejzić H., Rinne D.: Continuity properties of Peano derivatives in several variables. Real Anal. Exchange 21 (1995-6), 292-298. MR 1377538
[6] Laczkovich M.: On the absolute Peano derivatives. Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 21 (1978), 83-97. MR 0536205 | Zbl 0425.26005
[7] Lee C.-M.: On the approximate Peano derivatives. J. London Math. Soc. 12 (1976), 475-478. MR 0399378 | Zbl 0317.26005
[8] Lee C.-M.: Generalizations of Cesàro continuous functions and integrals of Perron type. Trans. Amer. Math. Soc. 266 (1981), 461-481. MR 0617545 | Zbl 0495.26003
[9] Lee C.-M.: On absolute Peano derivatives. Real Anal. Exchange 8 (1982-3), 228-243. MR 0694511 | Zbl 0535.26003
[10] Lee C.-M.: On generalized Peano derivatives. Trans. Amer. Math. Soc. 275 (1983), 381-396. MR 0678358 | Zbl 0506.26006
[11] Lee C.-M.: On generalizations of exact Peano derivatives. Contemp. Math. 42 (1985), 97-103. MR 0807982 | Zbl 0575.26004
[12] Mukhopadhyay S.N., Mitra S.: Measurability of Peano derivatives and approximate Peano derivatives. Real Anal. Exchange 20 (1994-5), 768-775. MR 1348098
[13] Oliver H.W.: The exact Peano derivative. Trans. Amer. Math. Soc. 76 (1954), 444-456. MR 0062207 | Zbl 0055.28505
[14] Svetic R.E., Volkmer H.: On the ultimate Peano derivative. J. Math. Anal. Appl. 218 (1998), 439-452. MR 1605380 | Zbl 0893.26001
[15] Verblunsky S.: On the Peano derivatives. Proc. London Math. Soc. 22 (1971), 313-324. MR 0285678 | Zbl 0209.36401
[16] Weil C.E.: The Peano notion of higher order differentiation. Math. Japon. 42 (1995), 587-600. MR 1363850 | Zbl 0841.26003
[17] Widder D.V.: An Introduction to Transform Theory. Academic Press, New York, 1971. Zbl 0219.44001
Partner of
EuDML logo