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Non-autonomous vector integral equations

with discontinuous right-hand side

Paolo Cubiotti

Abstract. We deal with the integral equation u(t) = f(t,
R

I
g(t, z)u(z) dz), with t ∈ I :=

[0, 1], f : I × Rn → Rn and g : I × I → [0,+∞[. We prove an existence theorem for
solutions u ∈ Ls(I, Rn), s ∈ ]1,+∞], where f is not assumed to be continuous in the
second variable. Our result extends a result recently obtained for the special case where
f does not depend explicitly on the first variable t ∈ I.

Keywords: vector integral equations, discontinuity, multifunctions, operator inclusions

Classification: 45P05, 47H15

1. Introduction

Let I := [0, 1], and consider the integral equation

(1) u(t) = f
(

∫

I
g(t, z)u(z) dz

)

for a.a. t ∈ I,

where f : R → R and g : I × I → [0,+∞[ are given functions. Recently [3],
an existence theorem for solutions u ∈ L∞(I,R) to equation (1) was established,
where, unlike other recent results in the field, the continuity of the function f
was not assumed. More precisely, f was required to be a.e. equal in a suitable
interval [0, σ] to a function f∗ : [0, σ] → R such that the set {x ∈ [0, σ] : f∗

is discontinuous at x} has null 1-dimensional Lebesgue measure. Later [4], such
result was extended to the case where f : R

n → R
n, establishing an existence

theorem for solutions u ∈ L∞(I,Rn) (Theorem 1 of [4]). In the latter result, the
above assumption (which specifies what kind of discontinuity is allowed for f) has
the following form: there exist a function f∗ :

∏n
i=1[0, σi] → R

n (with suitable
positive σi) and n subsets E1, . . . , En of

∏n
i=1[0, σi] such that the projection of

each set Ei over the i-th axis has null 1-dimensional Lebesgue measure and

(2) {x ∈
n

∏

i=1

[0, σi] : f
∗ is discontinuous at x}∪

∪ {x ∈
n

∏

i=1

[0, σi] : f
∗(x) 6= f(x)} ⊆

n
⋃

i=1

Ei.
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Moreover, it was proved that such result is no longer true if the set
⋃n

i=1Ei is
replaced by an arbitrary set E ⊆

∏n
i=1[0, σi] with null n-dimensional Lebesgue

measure.
Our aim in this note is to prove a further extension of Theorem 1 of [4] to

the more general case where the function f can depend explicitly on the variable
t ∈ I. That is, we are interested in the study of the vector integral equation

(3) u(t) = f
(

t ,

∫

I
g(t, z)u(z) dz

)

for a.a. t ∈ I,

where f : I ×R
n → R

n and g : I × I → [0,+∞[. We establish an existence result
for solutions u ∈ Ls(I,Rn) (with s ∈ ]1,+∞]) which contains Theorem 1 of [4] as a
special case. In particular, the function f will not be assumed to be continuous in
the second variable, but only to satisfy, for a.a. t ∈ I, a condition analogous to (2)
with respect to a function f∗ : I ×

∏n
i=1 ]0, σi[→ R

n (with suitable positive σi).
The function f∗( · , x) will be assumed to be measurable for each fixed x in a
countable dense subset of

∏n
i=1 ]0, σi[ . Consequently, as regards regularity of f ,

our assumptions are weaker than the usual Carathéodory condition assumed in
the literature (f measurable with respect to t ∈ I for all x ∈ R

n and continuous in
x ∈ R

n for a.a. t ∈ I). In this direction, the reader can see for instance [2], [5], [6]
(where the same equation is studied in the scalar case n = 1 to obtain existence
of integrable solutions) and also [7], and references therein. In particular, we refer
to [2], [7] for motivations for studying equation (3).
Before concluding this section, we point out that our result is obtained as an

application of an existence result for inclusions of the type Ψ(u)(t) ∈ F ( t ,Φ(u)(t))
established by O. Naselli Ricceri and B. Ricceri ([13]).

2. Notations

Essentially, we follow the same notations as in [4]. Let n ∈ N be fixed. We denote
by mn the n-dimensional Lebesgue measure in R

n. If i ∈ {1, . . . , n}, we denote
by πi : R

n → R the projection over the i-th axis. If x ∈ R
n, we put xi := πi(x)

(namely, we use subscripts to denote component of vectors). If x, y ∈ R
n, we write

x < y (resp., x ≤ y) to indicate that xi < yi (resp., xi ≤ yi) for all i = 1, . . . , n.
If x, y ∈ R

n, with x < y (resp., x ≤ y), we put ]x, y[ :=
∏n

i=1 ]xi, yi[ (resp.,
[x, y] :=

∏n
i=1[xi, yi]).

The space R
n (whose origin is denoted by 0n) is considered with its Euclidean

norm ‖ · ‖n. If x ∈ R
n, ε > 0, A ⊆ R

n, A 6= ∅, we put

B(x, ε) :=
{

y ∈ R
n : ‖x− y‖n < ε

}

,

B(x, ε) :=
{

y ∈ R
n : ‖x− y‖n ≤ ε

}

,

d(x,A) := inf
v∈A

‖x− v‖n.
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Moreover, we denote by A and coA the closure and the closed convex hull of A,
respectively.
If p ∈ [1,+∞], we denote by p′ the conjugate exponent of p. Moreover, we

denote by Lp(I,Rn) the space of all (equivalence classes of) measurable functions
u : I → R

n such that
∫

I
‖u(t)‖p

n dt < +∞ if p < +∞,

ess supt∈I ‖u(t)‖n < +∞ if p = +∞,

with the usual norm

‖u‖Lp(I,Rn) :=

(
∫

I
‖u(t)‖p

n dt

)
1

p

if p < +∞,

‖u‖L∞(I,Rn) := ess supt∈I ‖u(t)‖n if p = +∞.

We put Lp(I) := Lp(I,R). As usual, we denote by C0(I,Rn) the space of all
continuous functions v : I → R

n. Finally, we put I0 := ]0, 1[ .
We refer the reader to [1], [11] for the definitions and the basic facts about

multifunctions.

3. The result

We now state our main result.

Theorem 1. Let σ ∈ R
n, with 0n < σ, s ∈ ]1,+∞], and let f : I× ]0n, σ[→ R

n,

g : I × I → [0,+∞[ , α : I → R
n measurable, β ∈ Ls(I,Rn), φ0 ∈ Lj(I), with

j ≥ s′ and j > 1, φ1 ∈ Ls′(I), and P a countable dense subset of ]0n, σ[ . Assume
that:

(i) for a.a. t ∈ I, one has

(4)
0 < αi(t) < ess infx∈ ]0n,σ[ fi(t, x) ≤ ess supx∈ ]0n,σ[ fi(t, x) < βi(t)

for all i = 1, . . . , n;

(ii) one has

0 < ‖φ0‖Ls′(I) ≤ min
1≤i≤n

σi

‖βi‖Ls(I)
;

(iii) there exist sets E1, . . . , En ⊆ ]0n, σ[ , with m1(πi(Ei)) = 0 for all i =
1, . . . , n, and a function f∗ : I× ]0n, σ[→ R

n such that for each x ∈ P the
function f∗( · , x) is measurable and for a.a. t ∈ I one has

(5)
(

{

x ∈ ]0n, σ[ : f
∗(t, x) 6= f(t, x)

}

∪

∪
{

x ∈ ]0n, σ[ : f
∗(t, · ) is discontinuous at x

}

)

⊆
n
⋃

i=1

Ei;
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(iv) for each t ∈ I, the function g(t, ·) is measurable;
(v) for a.a. z ∈ I, the function g(· , z) is continuous in I, differentiable in I0
and

g(t, z) ≤ φ0(z), 0 <
∂g

∂t
(t, z) ≤ φ1(z) for all t ∈ I0.

Then there exists a solution u ∈ Ls(I,Rn) to equation (3).

Before proving Theorem 1, we need the two following propositions.

Proposition 1. Let σ ∈ R
n, with 0n < σ, let f : I× ]0n, σ[→ R

n, α : I → R
n

and β : I → R
n three given functions, with α and β measurable, and let K ⊆ I

measurable, with K 6= I, such that for each t ∈ I \K and each i = 1, . . . , n one
has

αi(t) < ess infx∈ ]0n,σ[ fi(t, x) ≤ ess supx∈]0n,σ[ fi(t, x) < βi(t).

Moreover, assume that there exist a function f∗ : I× ]0n, σ[→ R
n, a set E ⊆

]0n, σ[ , with mn(E) = 0, and a nonempty set P ⊆ ]0n, σ[ such that:

(i) for each t ∈ I \K, one has

{

x ∈ ]0n, σ[ : f
∗(t, x) 6= f(t, x)

}

∪

∪
{

x ∈ ]0n, σ[ : f
∗(t, · ) is discontinuous at x

}

⊆ E;

(ii) for each x ∈ P , the function f∗( · , x) is measurable.

Then there exists a function f̂ : I× ]0n, σ[→ R
n satisfying:

(a) for all i = 1, . . . , n one has

αi(t) ≤ f̂i(t, x) ≤ βi(t) for all t ∈ I \K and all x ∈ ]0n, σ[ ;

(b) for each t ∈ I \K, one has

{

x ∈ ]0n, σ[ : f̂(t, x) 6= f(t, x)
}

∪
{

x ∈ ]0n, σ[ : f̂(t, · ) is discontinuous at x
}

⊆ E;

(c) for each x ∈ P , the function f̂( · , x) is measurable.

Proof: Let t ∈ I \K be fixed. For each i = 1, . . . , n, let

Ri(t) :=
{

x ∈ ]0n, σ[ : f
∗
i (t, x) ≤ αi(t)

}

,

Si(t) :=
{

x ∈ ]0n, σ[ : f
∗
i (t, x) ≥ βi(t)

}

,

and let

T (t) :=
n
⋃

i=1

(Ri(t) ∪ Si(t)).
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We claim that T (t) ⊆ E. Arguing by contradiction, assume that there exists

x̂ ∈ T (t) \E. Therefore, there is some î ∈ {1, . . . , n} such that x̂ ∈ R
î
(t) ∪ S

î
(t).

Assume that x̂ ∈ R
î
(t) (if x̂ ∈ S

î
(t), we can argue in an analogous way). Hence

we have
f∗
î
(t, x̂) ≤ α

î
(t) < ess infx∈ ]0n,σ[ fî(t, x).

Since x̂ /∈ E, by assumption (i) the function f∗(t, · ) is continuous at x̂. Conse-
quently, there exists λ ∈ R

n, with 0n < λ, such that

f∗
î
(t, u) < ess infx∈ ]0n,σ[ fî(t, x) for all u ∈ V := ]x̂− λ, x̂+ λ[⊆ ]0n, σ[ ,

which contradicts assumption (i) since mn(V ) > 0. Such a contradiction implies
T (t) ⊆ E, as claimed. Therefore, we have proved that

(6) T (t) ⊆ E for all t ∈ I \K.

Now, let f̂ : I× ]0n, σ[→ R
n be defined by setting

f̂(t, x) =

{

f∗(t, x) if t ∈ I \K and x ∈ ]0n, σ[ \T (t)

β(t) otherwise.

Taking into account (6) and assumption (i), it follows easily from the construction

that f̂ satisfies conclusion (a) and also f̂(t, x) = f(t, x) for all (t, x) ∈ (I \K) ×
( ]0n, σ[ \E). To conclude the proof of conclusion (b), let t ∈ I \ K and x ∈

]0n, σ[ \E be fixed, and let us show that the function f̂(t, · ) is continuous at x.
By (6) we have x /∈ T (t), hence

αi(t) < f∗i (t, x) < βi(t) for all i = 1, . . . , n.

Since by assumption (i) the function f∗(t, · ) is continuous at x, there exists a
neighborhood U of x, with U ⊆ ]0n, σ[ , such that

αi(t) < f∗i (t, z) < βi(t) for all i = 1, . . . , n and all z ∈ U.

Consequently, we have U ∩ T (t) = ∅, hence f̂(t, z) = f∗(t, z) for all z ∈ U . This

implies that f̂(t, · ) is continuous at x, as claimed. Finally we prove conclusion (c).
To this aim, fix x ∈ P . Let

S :=
{

t ∈ I \K : x /∈ T (t)
}

=

n
⋂

i=1

{

t ∈ I \K : αi(t) < f∗i (t, x) < βi(t)
}

.

By our assumptions, the set S is measurable. Since we have

f̂(t, x) =

{

f∗(t, x) if t ∈ S

β(t) if t ∈ I \ S,

it follows from assumption (ii) that f̂( · , x) is measurable. �

The following proposition recollects some known facts about multifunctions.
For the reader’s convenience, we provide a short proof.
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Proposition 2. Let ψ : I × R
n → R

n be a given function, and let D be a
countable dense subset of R

n. Assume that:

(i) for each t ∈ I, the function ψ(t, · ) is bounded;
(ii) for each x ∈ D, the function ψ( · , x) is measurable.

Let F : I × R
n → 2R

n
be the multifunction defined by setting

(7) F (t, x) :=
⋂

m∈N

co
(

⋃

y∈D

‖y−x‖n≤ 1
m

{ψ(t, y)}
)

.

Then one has:

(a) F (t, x) 6= ∅ for all (t, x) ∈ I × R
n;

(b) for each x ∈ R
n, the multifunction F ( · , x) is measurable;

(c) for each t ∈ I, the multifunction F (t, · ) has closed graph;
(d) if t ∈ I and ψ(t, · ) is continuous at x ∈ R

n, then F (t, x) = {ψ(t, x)}.

Proof: (a). Let (t, x) ∈ I × R
n be fixed. For each m ∈ N, put

Am := co
(

⋃

y∈D

‖y−x‖n≤ 1
m

{ψ(t, y)}
)

.

Since the set D is dense in R
n, it is immediate to see that Am 6= ∅ for all m ∈ N.

Consequently, since Am+1 ⊆ Am for all m ∈ N, the family {Am}m∈N has the
finite intersection property. Since each Am is closed, by assumption (i) it follows
that F (t, x) =

⋂

m∈N
Am 6= ∅, as desired.

(b). Fix x ∈ R
n. By assumption (ii) and Theorems 8.2.2 and 8.2.4 of [1], for

each fixed m ∈ N the multifunction

t ∈ I → co
(

⋃

y∈D

‖y−x‖n≤ 1
m

{ψ(t, y)}
)

is measurable. Again by Theorem 8.2.4 of [1], the multifunction t → F (t, x) is
measurable.

(c). Fix t ∈ I. Let {x̂p} and {ŷp} be two sequences in R
n, converging to

x∗ ∈ R
n and y∗ ∈ R

n, respectively, such that

(8) ŷp ∈ F (t, x̂p) for all p ∈ N.

Let m ∈ N be chosen. Let ν ∈ N be such that

(9) ‖x̂p − x∗‖n ≤
1

2m
for all p ≥ ν.
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By (8) and (9), for each p ≥ ν we have

ŷp ∈ co
(

⋃

y∈D

‖y−x̂p‖n≤ 1
2m

{ψ(t, y)}
)

⊆ co
(

⋃

y∈D

‖y−x∗‖n≤ 1
m

{ψ(t, y)}
)

.

Since the last set does not depend on p, we get

y∗ ∈ co
(

⋃

y∈D

‖y−x∗‖n≤ 1
m

{ψ(t, y)}
)

.

As m ∈ N was arbitrary, we get y∗ ∈ F (t, x∗), as desired.

(d). Let t ∈ I be fixed, and let x ∈ R
n be such that ψ(t, · ) is continuous at x.

Let ε > 0 be fixed. Then, there exists δ > 0 such that

ψ(t, B(x, δ)) ⊆ B(ψ(t, x), ε).

Consequently, for each m > 1
δ one has

co
(

⋃

y∈D

‖y−x‖n≤ 1
m

{ψ(t, y)}
)

⊆ B(ψ(t, x), ε),

hence F (t, x) ⊆ B(ψ(t, x), ε). Since ε was arbitrary and F (t, x) 6= ∅, we easily get
F (t, x) = {ψ(t, x)}, as claimed. �

Proof of Theorem 1: We can suppose j < +∞. Put E :=
⋃n

i=1Ei (of
course, mn(E) = 0), and let K ⊆ I, with m1(K) = 0, such that (4) and (5) hold

for each t ∈ I \ K. Now, let f̂ : I× ]0n, σ[→ R
n be a function satisfying the

conclusion of Proposition 1 (the assumptions of Proposition 1 are satisfied), and
let ψ : I × R

n → R
n be defined by

(10) ψ(t, x) =

{

f̂(t, x) if (t, x) ∈ (I \K)× ]0n, σ[

β(t) otherwise.

In particular, observe that

(11) α(t) ≤ ψ(t, x) ≤ β(t) for all (t, x) ∈ (I \K)× R
n.

Let Ω be a dense countable subset of R
n\ ]0n, σ[ . Hence, the set D := P ∪Ω is a

dense countable subset of R
n. It follows easily from the above construction that
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ψ and D satisfy the assumptions of Proposition 2. Consequently, the multifunc-
tion F : I × R

n → 2R
n
defined by (7) satisfies the conclusion of Proposition 2.

Moreover, by (10) and (11) we get

(12)

{

F (t, x) ⊆ [α(t), β(t)] if (t, x) ∈ (I \K)× R
n

F (t, x) = β(t) if (t, x) ∈ K × R
n.

Now we want to apply Theorem 1 of [13] taking T = I, X = Y = R
n, p = s,

q = j′, V = Ls(I,Rn), Ψ(u) = u, r = ‖β‖Ls(I,Rn), ϕ(λ) ≡ +∞,

Φ(u)(t) =

∫

I
g(t, z)u(z) dz,

and F : I × R
n → 2R

n
as above. In particular, we observe the following facts.

(a) Φ(Ls(I,Rn)) ⊆ C0(I,Rn). This follows easily from our assumptions (iv)
and (v) and the Lebesgue’s dominated convergence theorem.

(b) If v ∈ Ls(I,Rn) and {vk} is a sequence in Ls(I,Rn), weakly convergent to v

in Lj′(I,Rn), then the sequence {Φ(vk)} converges to Φ(v) strongly in L1(I,Rn).
This follows by Theorem 2 at p. 359 of [10], since g is j-th power summable in I×I
(note that g is measurable on I× I by the classical Scorza-Dragoni’s theorem; see
[14] or also [9]).

(c) By (12) (taking into account that 0n < α(t) for all t ∈ I \K), the function

h : t ∈ I → sup
x∈Rn

d(0n, F (t, x))

belongs to Ls(I) and ‖h‖Ls(I) ≤ ‖β‖Ls(I,Rn).

Therefore, taking into account the above construction, all the assumptions of
Theorem 1 of [13] are satisfied. Consequently, there exist a function û ∈ Ls(I,Rn)
and a set H ⊆ I, with m1(H) = 0, such that

(13) û(t) ∈ F ( t ,Φ(û)(t)) for all t ∈ I \H.

In particular, by (12) we have

(14) û(t) ∈ [α(t), β(t)] for all t ∈ I \ (H ∪K).

For each fixed i = 1, . . . , n, let γi : I → R be defined by

γi(t) := πi(Φ(û)(t)) =

∫

I
g(t, z) ûi(z) dz.
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For each t ∈ I, by (ii), (v) and (14) we have

0 ≤ γi(t) ≤ ‖φ0‖Ls′(I) · ‖ûi‖Ls(I) ≤
σi

‖βi‖Ls(I)
· ‖βi‖Ls(I) = σi ,

hence

(15) γi(I) ⊆ [0, σi].

By (iv), (v) and (14), it is easy to see that γi is strictly increasing, and also by
Lemma 2.2 at p. 226 of [12], we have

d

dt
γi(t) =

∫

I

∂g

∂t
(t, z) ûi(z) dz > 0 for all t ∈ I0.

By Theorem 2 of [15] (taking into account (a)), the function γ−1i is absolutely
continuous. Put

Si := γ
−1
i

[

(πi(Ei) ∪ {0, σi}) ∩ γi(I)
]

.

By assumption (iii) and Theorem 18.25 of [8], we get m1(Si) = 0. At this point,
put

S := (

n
⋃

i=1

Si) ∪K ∪H.

Choose any point t∗ ∈ I \ S. We claim that

(16) Φ(û)(t∗) ∈ ]0n, σ[ \E.

To see this, observe that for each i = 1, . . . , n we have γi(t
∗) /∈ πi(Ei) ∪ {0, σi},

hence by (15) we get γi(t
∗) ∈ ]0, σi[ and also Φ(û)(t

∗) /∈ Ei. Therefore, (16)

follows. Since ψ(t∗, x) = f̂(t∗, x) for all x ∈ ]0n, σ[ , and by (16) the function

f̂(t∗, · ) is continuous at Φ(û)(t∗), it follows that ψ(t∗, · ) is continuous at Φ(û)(t∗),
hence (taking into account conclusion (d) of Proposition 2) we have

F ( t∗ ,Φ(û)(t∗)) = {ψ( t∗ ,Φ(û)(t∗))} = {f̂( t∗ ,Φ(û)(t∗))} = {f( t∗ ,Φ(û)(t∗))}.

Consequently, (13) implies

û(t∗) = f( t∗ ,Φ(û)(t∗)).

As t∗ was any point in I \ S and m1(S) = 0, the proof is complete. �
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Remark. The example at p. 245 of [3] shows that in assumption (v) of Theorem 1

one cannot assume 0 ≤ ∂g
∂t (t, z) ≤ φ1(z). Moreover, as we pointed out in Section 1,

the example provided at the end of [4] shows that in assumption (iii) of Theorem 1
the set

⋃n
i=1Ei cannot be replaced by any set E ⊆ ]0n, σ[ with mn(E) = 0.

The next example shows that the sets E1, . . . , En in assumption (iii) of Theo-
rem 1 cannot be assumed to depend on t ∈ I.

Example. Let n = 1, s = +∞, α(t) ≡ 1
2 , β(t) ≡ 3, σ = 4, g(t, z) = t, φ0(z) ≡ 1,

φ1(z) ≡ 1 and

(17) f(t, x) =

{

1 if x 6= t

2 if x = t.

It is easy to check that all the assumptions of Theorem 1 are satisfied, with the
exception of assumption (iii). Moreover, observe that if one puts f∗(t, x) ≡ 1,
than for each t ∈ ]0, 1] one has {x ∈]0, 4[ : f∗(t, x) 6= f(t, x)} = {t} (or also, one
can take f∗ = f and observe that for each t ∈ ]0, 1] one has {x ∈ ]0, 4[ : f(t, · ) is
discontinuous at x} = {t}; in both cases, the function f∗( · , x) is measurable for
all x ∈ ]0, 4[ ). Now we prove that there is no solution u ∈ L1(I) to problem (3).
Arguing by contradiction, assume that such a solution exists. Consequently, by
(17) we get u(t) ∈ {1, 2} for a.a. t ∈ I. Therefore, we have

(18) u(t) = f( t , t ‖u‖L1(I)) for a.a. t ∈ I.

Now, assume that ‖u‖L1(I) = 1. By (17) and (18) we get u(t) = 2 a.e. in I,

a contradiction. If, conversely, we assume that ‖u‖L1(I) > 1, again by (17)

and (18) we get u(t) = 1 a.e. in I, another contradiction. This proves our claim.
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