Previous |  Up |  Next

Article

Keywords:
vector-valued function spaces; Orlicz functions; Orlicz spaces; Orlicz-Bochner spaces; topological dual; order dual; order continuous linear functionals; singular linear functionals; modulars; conjugate modulars
Summary:
Let $L^\varphi (X)$ be an Orlicz-Bochner space defined by an Orlicz function $\varphi $ taking only finite values (not necessarily convex) over a $\sigma $-finite atomless measure space. It is proved that the topological dual $L^\varphi (X)^*$ of $L^\varphi (X)$ can be represented in the form: $L^\varphi (X)^*=L^\varphi (X)^\sim _n\oplus L^\varphi (X)^\sim _s$, where $L^\varphi (X)^\sim_n$ and $L^\varphi (X)^\sim_s$ denote the order continuous dual and the singular dual of $L^\varphi (X)$ respectively. The spaces $L^\varphi (X)^*$, $L^\varphi (X)^\sim _n$ and $L^\varphi (X)^\sim _s$ are examined by means of the H. Nakano's theory of conjugate modulars. (Studia Mathematica 31 (1968), 439--449). The well known results of the duality theory of Orlicz spaces are extended to the vector-valued setting.
References:
[1] Aliprantis C.D., Burkinshaw O.: Locally solid Riesz spaces. Academic Press, New York, 1978. MR 0493242 | Zbl 1043.46003
[2] Ando T.: Linear functionals on Orlicz spaces. Niew Arch. Wisk. 8 (1960), 1-16. MR 0123907 | Zbl 0129.08001
[3] Behrends E.: M-structure and the Banach-Stone theorem. Lecture Notes in Math. 736, Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 0547509 | Zbl 0371.46013
[4] Bochner S., Taylor A.E.: Linear functionals on certain spaces of abstractly-valued functions. Ann. of Math. (2) 39 (1938), 913-944. MR 1503445 | Zbl 0020.37101
[5] Bukhvalov A.V.: On an analytic representation of operators with abstract norm. Soviet Math. Dokl. 14 (1973), 197-201. Zbl 0283.47028
[6] Bukhvalov A.V.: On an analytic representation of operators with abstract norm (in Russian). Izv. Vyss. Uceb. Zaved. 11 (1975), 21-32. MR 0470746
[7] Bukhvalov A.V.: On an analytic representation of linear operators by vector-valued measurable functions (in Russian). Izv. Vyss. Uceb. Zaved. 7 (1977), 21-31.
[8] Bukhvalov A.V., Lozanowskii G.Ya.: On sets closed in measure in spaces of measurable functions. Trans. Moscow Math. Soc. 2 (1978), 127-148.
[9] Chen S., Hudzik H.: On some convexities of Orlicz and Orlicz-Bochner spaces. Comment. Math. Univ. Carolinae 29.1 (1988), 13-29. MR 0937545 | Zbl 0647.46030
[10] Day M.M.: The spaces $L^p$ with $0. Bull. Amer. Math. Soc. 46 (1940), 816-823. MR 0002700
[11] Drewnowski L.: Compact operators on Musielak-Orlicz spaces. Comment. Math. 27 (1988), 225-232. MR 0978274 | Zbl 0676.46024
[12] Escribano C., Fernández F.J., Jiminéz Guerra P.: On the Orlicz spaces of functions valued in locally convex spaces. Comment. Math. 32 (1992), 33-44. MR 1202756
[13] Gramsch B.: Die Klasse metrischer linear Raüme $\Cal L_\Phi $. Math. Ann. 176 (1967), 61-78. MR 0209819
[14] Hernandez F.: Continuous functionals on a class of Orlicz spaces. Houston J. Math. 11 2 (1985), 171-181. MR 0792193 | Zbl 0577.46025
[15] Ionescu Tulcea A., Ionescu Tulcea C.: Topics in the Theory of Lifting. Springer-Verlag, Berlin-Heidelberg-New York, 1969. MR 0276438 | Zbl 0179.46303
[16] Kamińska A., Turett B.: Uniformly non-$l^1(n)$ Orlicz-Bochner spaces. Bull. Polon. Acad. Sci. 35 3-4 (1987), 211-218. MR 0908170
[17] Kantorovich L.V., Akilov G.P.: Functional Analysis (in Russian). Nauka, Moscow, 1984 (3$^{rd}$ edition). MR 0788496
[18] Luxemburg W.A.: Banach Function Spaces. Delft, 1955. MR 0072440 | Zbl 0162.44701
[19] Luxemburg W.A., Zaanen A.C.: Conjugate spaces of Orlicz spaces. Indagationes Math. 59 (1956), 217-228. MR 0077899 | Zbl 0072.12301
[20] Maligranda L., Wnuk W.: Landau type theorem for Orlicz spaces. Math. Z. 208 (1991), 57-64. MR 1125732 | Zbl 0738.46013
[21] Musielak J., Orlicz W.: Some remarks on modular spaces. Bull. Acad. Polon. Sci. 7 (1959), 661-668. MR 0112017 | Zbl 0099.09202
[22] Musielak J.: Orlicz spaces and modular spaces. Lecture Notes Math. 1034, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. MR 0724434 | Zbl 0557.46020
[23] Nakano H.: On generalized modular spaces. Studia Math. 31 (1968), 439-449. MR 0234248
[24] Nowak M.: On the order structure of Orlicz lattices. Bull. Acad. Polon. Sci. 36 5-6 (1988), 239-249. MR 1101668 | Zbl 0767.46005
[25] Nowak M.: Order continuous linear functionals on non-locally convex Orlicz spaces. Comment. Math. Univ. Carolinae 33.3 (1992), 465-475. MR 1209288 | Zbl 0812.46017
[26] Nowak M.: Duality of non-locally convex Orlicz spaces. Math. Japonica 5 (1993), 813-832. MR 1240281 | Zbl 0801.46029
[27] Nowak M.: Duality theory of vector-valued function spaces I. Comment. Math. 37 (1997), 195-215. MR 1608189 | Zbl 0908.46023
[28] Nowak M.: A note on generalized Young's inequality for Orlicz functions. Funct. et Approx. 26 (1998), 3 225-231. MR 1666621 | Zbl 0927.46020
[29] Nowak M.: Mackey topologies of Orlicz-Bochner spaces. Proc. Razmadze Math. Inst. 118 (1998), 101-110. MR 1693247 | Zbl 0951.46011
[30] Orlicz W.: A note on modular spaces I. Bull. Acad. Polon. Sci. 9 (1961), 157-162. MR 0131763 | Zbl 0109.33404
[31] Orlicz W.: On integral representability of linear functionals over the space of $\varphi $-integrable functions. Bull. Acad. Polon. Sci. 8 (1960), 567-569. MR 0126160
[32] Rao M.M.: Linear functionals on Orlicz spaces: General theory. Pacific J. Math. 25 3 (1968), 553-585. MR 0412791 | Zbl 0164.43601
[33] Rao M.M., Ren Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York, Basel, Hong Kong, 1991. MR 1113700 | Zbl 0724.46032
[34] Rolewicz S.: Some remarks on the spaces $N(L)$ and $N(l)$. Studia Math. 18 (1959), 1-9. MR 0103413 | Zbl 0085.32301
[35] Turpin P.: Convexités dans les espaces vectoriels topologiques généraux. Dissertationes Math. 131 (1976). MR 0423044 | Zbl 0331.46001
[36] Wilansky A.: Modern methods in topological vector spaces. McGrawhill, Inc., 1978. MR 0518316 | Zbl 0395.46001
[37] Zaanen A.C.: Riesz Spaces II. North-Holland Publ. Com., Amsterdam, New York, Oxford, 1983. MR 0704021 | Zbl 0519.46001
Partner of
EuDML logo