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Topological dual of non-locally
convex Orlicz-Bochner spaces

MARIAN NOWAK

Abstract. Let L¥(X) be an Orlicz-Bochner space defined by an Orlicz function ¢ taking
only finite values (not necessarily convex) over a o-finite atomless measure space. It
is proved that the topological dual L?(X)* of L¥(X) can be represented in the form:
L?(X)* = L?(X)y®L?(X)y, where L¥(X); and L¥(X)5 denote the order continuous
dual and the singular dual of L¥(X) respectively. The spaces L¥(X)*, L?(X); and
L?(X)y are examined by means of the H. Nakano’s theory of conjugate modulars.
(Studia Mathematica 31 (1968), 439-449). The well known results of the duality theory
of Orlicz spaces are extended to the vector-valued setting.

Keywords: vector-valued function spaces, Orlicz functions, Orlicz spaces, Orlicz-Bochner
spaces, topological dual, order dual, order continuous linear functionals, singular linear
functionals, modulars, conjugate modulars

Classification: 46E30, 46E40, 46A20

0. Introduction and preliminaries

For a given real Banach space (X, || - ||x) and an ideal E of L? one can con-
sider X-valued function spaces E(X) defined as subspaces of the space L(X) of
strongly measurable functions and consisting of all those f € LO(X ) for which
the scalar function f = ||f(-)|x belongs to E. In case when (E,|| - ||g) is a
complete F-normed function space, the space E(X) provided with the F-norm
1flex) = | fll & is usually called a Kothe-Bochner space. The most important
class of K6the-Bochner spaces are Lebesgue-Bochner spaces LP(X) (0 < p < o0)
and their generalization, Orlicz-Bochner spaces L¥(X) (see [9], [16]). In 1938
S. Bochner and A.E. Taylor [4] showed that the topological dual of a Lebesgue-
Bochner space LP(X) (1 < p < 00) is identifiable with LI(X*) (p~' +¢~ 1 =1)
if and only if X* satisfies the Radon-Nikodym property. A. Ionescu Tulcea and
C. Ionescu Tulcea [15] showed that the dual space of LP(X) is identifiable with the
space LY(X™*, X) consisting of weak*-measurable functions. Next, A.V. Bukhvalov
[5], [6] extended this result to the class of Kéthe-Bochner spaces (E(X), [|[| g(x))
when (E, ||-||g) is a Banach function space with an order continuous norm || - || g.
The integral representation of order continuous linear functionals on E(X) in
terms of the space E'(X*, X) of weak*-measurable functions (E’ = the Kothe
dual of F) was found by A.V. Bukhvalov [6].
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Let us recall that a linear functional F' on F(X) is order continuous, whenever

for a sequence (f) in B(X), fn L), 0 in E implies F(fn) — 0. A.V. Bukhvalov
and G. Lozanowskii [8] showed that if (F, || - | g) is a Banach function space, then
the topological dual E(X)* of a Kéthe-Bochner space (E(X), | [ g(x)) admits a
direct sum decomposition: E(X)* = E(X); ® E(X)y, where E(X); and E(X)3
denote the order continuous dual and the singular dual of E(X) respectively.

As far as we know the first results concerning the topological dual of non-locally
convex Orlicz-Bochner spaces L¥(X) are due to F. Hernandez [14], who studied

the spaces L¥(X), whenever tlim @ = 0 and a measure space is atomic. Duals
—00

of Orlicz spaces of functions valued in locally convex spaces are studied in [12].

In this paper we examine the topological dual of Orlicz-Bochner spaces L¥(X)
defined by a finite valued Orlicz function ¢ (not necessarily convex) over a o-finite
atomless measure space and provided with its complete F-norm topology T, (X).
In [29] we showed that the Mackey topology 77, (x) of (L¥(X), Ty (X)) coincides
with the supremum of the topology T%(X)|r¢(x) (# = the convex minorant
of ¢) and the topology 7,(X) of the Minkowski functional of the Orlicz class
Lg (X). This result allows us to use the methods of the theory of locally convex
spaces to examine the topological dual L¥(X)* of (L¥(X),T,(X)). In particular,
it is shown that L¥(X)* = LY(X)y @ L¥(X)3. Moreover, we make use of the
Nakano’s theory of conjugate modulars [23] to study the spaces L¥(X)*, L¥(X)yy
and L¥(X)3. We extend to the “vector valued setting” the well known results con-
cerning the dual of scalar Orlicz spaces (cf. [2], [10], [13], [19], [25], [32], [33], [34]).

For terminology concerning Riesz spaces we refer to [1], [17]. Throughout the
paper let (Q,%, ) be a o-finite atomless measure space and let LY stand for
the corresponding space of equivalence classes of all ¥-measurable real valued
functions defined and finite p-a.e. Then LY is a super Dedekind complete Riesz
space under the ordering u; < ug whenever uj(w) < ug(w) p-a.e. For a subset A
of  let x4 stand for its characteristic function. As usual, let N be the set of all
natural numbers. We will write Ay, \,, 0, whenever (Ay) is a decreasing sequence
in ¥ such that u(A4, N A) — 0 for every A € ¥ with u(A) < co.

Let (X, - ||x) be a real Banach space, and let Sx and Bx denote the unit
sphere and the unit ball in X respectively. Let X* stand for the topological
dual of X. By L%(X) we will denote the linear space of equivalence classes of all
strongly ¥-measurable functions f: @ — X. For a function f € L9(X) let us put
J(@) = 17(@)lx for we Q.

Now we recall some terminology concerning Orlicz spaces and Orlicz-Bochner
spaces (see [2], [9], [16], [22], [26], [27], [29], [33], [35]).

By an Orlicz function we mean here a function ¢: [0, 00) — [0, c0) that is non-
decreasing, left continuous, continuous at 0 with ¢(0) = 0. An Orlicz function ¢
is said to be strict if ¢ is not identically equal to 0.

For an Orlicz function ¢ by @ we will denote its convex minorant, i.e., P is
the largest convex Orlicz function that is smaller than ¢ on [0,00). Clearly @ is
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strict iff lim inf e(t) > 0.
t—o0 t

Let ¢ be an Orlicz function. For each u € L9 let

() = /Q o([uw)]) dp.

The Orlicz space defined by ¢ is an ideal of LY defined by
L¥ = {ue L : my(lu) < 0o for some A >0}

and endowed with the complete semi-metrizable topology T, of the Riesz pseudo-
norm |ul, = inf{A > 0: my(u/X) < A}. Ty is a Hausdorff topology iff ¢ is
strict. Moreover, if ¢ is a convex Orlicz function then T, can be generated by
two Riesz seminorms: |ull, = infyso{A71(1 + my(Au))} and [|ul|, = inf{\ >
0: my(u/N) <1},

Let B? = {u € LY my(\u) < oo for all A > 0}. Then E¥ is | - | ,-closed ideal
of L¥ with supp F¥ = Q and LY = E¥ iff ¢ satisfies the suitable Ag-condition

(in symbols ¢ € Ag) i.e., limsupw < oo ast — 0 and t — oo, whenever

(1)
() = oo; resp. as t — 0o, whenever u(£2) < oco.

For each f € LY(X) let

Mgo(f) = mgo(f)-

The space _
LA(X)={feL%X): fe L¥}
is called an Orlicz-Bochner space and can be endowed with a complete semimetriz-

able topology T,(X) of the F-pseudonorm |f|pe(xy = |]7|g0 for f € L¥(X).
If ¢ is a convex Orlicz function then T,(X) can be generated by two norms
[ llzexy = Iflle and 1 £l e ) = Ml lle-

Now we recall some terminology concerning the solid structure and the duality
theory of vector valued function spaces (see [27]).

A subset H of L¥(X) is said to be solid if fi < fo with f; € L?(X) and
fo € H imply f1 € H. A linear subspace B of L¥(X) is called an ideal if B is a

solid subset of L¥(X). In particular, E¥(X) is an ideal of L¥(X).
A pseudonorm p on L¥(X) is said to be solid if p(f1) < p(f2) whenever f1, fa €

L?(X) with f1 < fa. Clearly |- | (x) is a solid F-norm on L¥(X).
For a linear functional F' on L¥(X) let us set

|F|(f) =sup{|F(h)|: h € E(X)]L < f} for all f e E(X).
The linear space

LY(X)~ = {F e L?(X)* : |F|(f) < oo forall fe E(X)}
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is called the order dual of L¥(X). (Here L¥(X)# denotes the algebraic dual of
L¥#(X).) One can show that

(0.1) L#(X)* = L#(X)™,
where L¥(X)* stands for the topological dual of (L¥(X),T,(X)) (see [8]).

For F1, Fy € L¥(X)™ we will write |F1| < |Fa| whenever |F1|(f) < |Fa|(f) for
all f € L¥(X).

A linear subspace I of L¥(X)™ is said to be an ideal of L¥(X)~ whenever
|F1| < |Fa|, F1 € LY(X)™, Fo € I imply Fy € 1.

1. Conjugate modulars

From now on in this paper we will assume that ¢ is a strict Orlicz function.
The functional M, restricted to L¥(X) is a semimodular (see [21], [22]).

Due to H. Nakano [23] the conjugate M, of the semimodular M, can be defined
on L¥(X)# by

M ,(F) = sup{[F(f)] - Mo(f) : [ € L?(X)}.

A functional F' € L¥(X)¥ is said to be bounded for M, if there exists a number
v > 0 such that |F(f)] < v(My(f)+1) for all f € L¥(X). The collection of all

F € L?(X)# that are bounded for M, will be denoted by L#(X). Following [23,
§5] one can define the polar Py, of My by

Py, (F) = sup{|F(f)| : f € LP(X), Mp(f) <1}
for F € L¥(X)#. Tt is known that Py, is a norm on L¥(X) (see [23, §5]).

Theorem 1.1. For each I' € L¥(X)" we have Py (F) < oo and |F(f)| <
Par, (F)(My(f) +1) for all f € L#(X).

PRrooOF: Following [31] we can easily show that Py (F') < oo for all F € L¥(X)*.
Now let M,(f) < oo and let My(f) = n+r, wheren € N, 0 < r < 1. Since
the measure space (2,%, 1) is assumed to be atomless we can choose a finite
partition {Aq,...,Ap, A} of Q such that My(xa,f) =1 fori=1,2,... ,n and
My(xaf) = r. Hence for f € LP(X) we have f = (3j=; xa,f) + xaf and
[F(H <2250 FOea DI+ IF(ah)l < Par, (F)(n + 1) < Pag, (F)(Mp(f) + 1)ﬁ

Theorem 1.2. The following identities hold:
(x)  LY(X)* =LP(X)={F e LP(X)" : My (AF) < oo for some A > 0}.
Moreover, M, restricted to L¥(X)* is a convex semimodular and

() My (F) = sup{|F|(f) — My(f) : f € L?(X), Mp(f) < oo}.
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Hence M@(Fl) < Mp(Fg) if |F1| < |F3).

PROOF: Arguing as in the proof of [26, Theorem 3.1] we obtain the identities ().
Clearly M, is a convex semimodular on L¥(X)*. Now, let f € L?(X). Then
for each h € L#(X) with h < f we have |F(h)| < My(F) + My(f), so |F|(f) <
M,(F)+My(f). It follows that the identity (+x) holds, and the proof is complete.

(]

By means of the convex semimodular M, one can define on L¥(X)* two norms
according to the general definitions (see [23, §6]):
13z, = Air>1fo{/\_1(1 +Mp(Af))} and [Fllgz, =inf{A >0: My (F/)) <1}
and in view of [30, 1.51] we have:
I1Fllyy, < 1l < 20Fllyy, and [1Flly <1 Ma(F) <1
Theorem 1.3. Let F € L¥(X)*. Then

(%) Pap, (F) = sup{|F|(f) : f € L¥(X), Mp(f) < 1},
(+4) I1F I, < Par, (F) < [1Flly;
P * i i > A== By || — i
Moreover, L¥(X)* provided with PMw (resp. || ||M¢, Il |||Mw) is a Banach space.

PROOF: Let My (f) < 1. Then for each h € L¥(X) with h < f we have |F(h)| <
Pyp, (F). Hence |F|(f) < Py, (F), and it follows that (x) holds. To prove that
() holds it is enough to repeat the argument from the proof of [26, Theorem 3.2].
To show that (L¥(X)*, Pp,) is a Banach space assume that (7,) is Ppy,-Cauchy
sequence in L¥(X)*, and let € > 0 be given. Then Py (Fy — Fn) < ¢ for
n,m > ng for some ng € N. For each f € L¥(X) take A > 0 such that M,(A\f) <
0o. By Theorem 1.1 [Fyp(Af) — Fm(Af)| < Ppr, (Fn — Fp)(Mp(Af) + 1), so
|[Fn(f)=Fm(f)| < 5 (Mp(Af)+1). Putting F(f) = lim Fy,(f) for each f € LY(X),
one can easily observe that F' is a bounded for M, linear functional on L¥(X),
so by Theorem 1.2, F € L%(X)*. Moreover, let My(f) < 1 and let n > ng
be given. Then for each m > ng we have |F,(f) — F(f)| < |Fn(f) — Fin(f)] +
|Fm (f) = F()| < e(Mp(f) +1) + [Fm(f) = F(f)], so [Fn(f) = F(f)| < 2¢. Hence
Pyp, (Fn — F) < 2e. 1t follows that Ppy, (Fn — F) — 0, as desired. O

2. Order continuous linear functionals on Orlicz-Bochner spaces

Throughout this section we will assume that litm inf @ > 0.
— 00

Let us recall that the Kothe dual (L¥)" of L¥ is equal to L¥" (see [20], [25,
Theorem 3.2]), where ¢* denotes the Young function conjugate to ¢ in the sense
of Young, i.e., p*(s) = sup{ts — p(¢t): t > 0} for s > 0.

)

It is known that if litrn inf @ = oo (resp. litm inf % =a, 0<a < oo) then
— 0 — 0

©* takes only finite values (resp. ¢*(s) < oo for 0 < s < a, ¢*(s) = oo for s > a)
(see [25, Lemmas 2.2 and 2.3], [28]).
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Definition 2.1 (see [6]). A linear functional F' on L¥(X) is said to be order

continuous whenever ]?U ﬂ 0 in L% implies F(f,) — 0. In view of the super
Dedekind completeness of L¥(X) one can restrict ourselves to usual sequences
(fn) (see [27, Theorem 2.2.]). The set consisting of all order continuous linear
functionals on L¥(X) will be denoted by L¥(X); . It is known that L¥(X); is
an ideal of L¥(X)™ (see [27, Theorem 2.2]).

To describe the space L?(X); we recall terminology concerning spaces of
weak™-measurable functions (see [6], [27]).

Let LO(X * X) stand for the linear space of weak*-equivalence classes of all
weak*-measurable functions g: @ — X*. One can define the so-called abstract
norm 9 : LO9(X*, X) — L9 by

9(g) = sup{|gz| : v € Bx}
where gz (w) = g(w)(z) for w € Q. Let

LY (X*, X) = {g e LOX*,X) : 9(g) € L¥"}.

Then LY (X*) = LY (X*, X) N LY(X*) and d(g) = g for g € L¥ (X*). It
is known that L¥ (X*, X) = L¥ (X*) whenever X* has the Radon-Nikodym
property with respect to u (see [7, Theorem 3.5]). L¥ (X*, X) can be provided
with two norms:

gl o e x) = 1@y Mgl ey = NPl

We shall need the following technical lemma.

Lemma 2.1 (cf. [6, Theorem 1.1)). Let f € L¥(X) and g € L¥" (X*, X). Then

sup{\ [ :heL%”(X),%sf}— | Fria)e) du

The following important result describes order continuous linear functionals on
L¥(X) in terms of the space L¥ (X*, X) (see [6, Theorem 4.1]).

Theorem 2.2. For a linear functional F' on L¥(X) the following statements are
equivalent:

(i) F is order continuous;
(i) F is modular continuous (i.e. My(fn) — 0 implies F(fn) — 0);
(iii) there exists a unique g € L¥ (X*, X) such that

F(f) = Fy(f) = /Q (f(w), g(w)) dp for all fe LP(X),
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Moreover, for g € L¥" (X*, X)

(%) [Fyl(f / flw w)du for all fe L¥(X).

PRrROOF: (i) = (ii) Let mw(fn) — 0. In view of [24, Theorem 2.3] it follows that
7o 0in L#. Hence F(f,) — 0, as desired.

(i) = () Let fo <2 0in L?. Then my(Afn) — 0 for some A > 0. Hence
F(fn) — 0 as desired.

(i) < (iii) It follows from [6, Theorem 4.1].

The identity (x) follows from Lemma 2.1. O

Lemma 2.3 (cf. [25], [28]). Assume that lim inf CAOR (resp. liminf o) a,
t—o0 t t—o0 t

where 0 < a < 00). Then for a measurable bounded function v > 0 (resp. v with
0 <v(w) < a p-a.e.) there exists a measurable bounded function u > 0 such that

pu(w)) + ¢*(v(w)) = u(w)ov(w) p-a.e.
Now we are ready to describe My, || - ”Mv: and ||| - |||M<p on LP(X)y (cf. [19],
[25, Theorem 4.2]).

Theorem 2.4. For each g € L¥ (X*, X) the following identities hold:
() T (Fy) = me (0(9)):
(i) [1Fgllaz, = 199l = 19l Lo (x,x)

)
(i) [1Fgllaz, = (@)l = |||9|||L¢ (X*,X)
(iv) Pag, (Fy) = sup{]| Jq u( )dul ue B mp(u) <1}
= sup{| [ (h(w), ( ))dul = h € E¥(X), My(h) <1}.

PROOF: (i) From the definition of ¢* it follows that
M (Fg) < mp-(9(9))-
To prove that M (Fy) > my+(9(g)) we will distinguish two cases:
A. Assume that litminf@ = a < 00. Then ¢*(s) < oo for 0 < v < a,
—00

©*(s) = oo for s > a. Thus the inclusion L¥" C L holds and we can consider
two subcases:

19, Assume that ||9(g)||cc < @ (here || - [|oo stands for the norm in L°). Since

supp E¥ = Q there exists a sequence () in ¥ such that Q, 7 Q, u(Q) < oo
and xq, € E¥ (see [37, Theorem 86.2]). For n € N let us set

Un(w) — { ﬁ(g)(w) if 19(9)(“]) <n and w € Qp,

0 elsewhere.
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Hence v, € E¥, because v, < nxq, for n € N. In view of Lemma 2.3 for
n € N there exists 0 < wy, € LY with supp w, C Oy, and such that ¢(wy(w)) +

©* (v (w)) = wp(w)vy(w) for w € Q. Since ©*(vp(w)) Tn ¢*(¥(g)(w)) for w € Q,
by the Fatou lemma we get

For n € Nlet fn(w) = wp(w)xg for w € O and some zg € Sx. Let € > 0 be given.

In view of Lemma 2.1 for n € N there exists hy, € L¥(X) with hn < fn and such
that

) | @@ @ dn <| [ (). o) du] +=

Hence by (1) and (2)

It follows that my+(9(g)) = M,(Fy), as desired.

20, Assume that [|[9(g)|lsc > a. Then my+(J(g)) = oco. Since litminf@ =a,

— 0

there exists a sequence (tp,) such that 0 < ¢, T oo and p(t,) < (a + 0)tn. Choose
0 <A< 1land 0 < d§ < a such that ||AM}(9)|loo = a and (a+65) < 1. Let
A= {w e QN (g)(w) > a — 0} and choose C' € ¥ with C C A such that
0 < u(C) < co. Let up, = tpxc for n € N and f, = upxg for some zg € Sx.

Let £ > 0 be given. Then by Lemma 2.1 for n € N there exists h, € L¥(X)
with h, < fp = up and such that

/ n(w) d,u<‘/ hn(w ) du| + e.
Q
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Thus
Mo(F) 2 | [thulw). gD di| = [ o(hal) du
Q Q
> [ dn— [ plun@)dn <.
Q Q
But
e td) [ watrita)) dn = Mot ), 20y

= (a+0)tpu(C) >
Hence for n € N
M (F,) > (1 -

(w)) dp.
p— )9(9)(w) dp — e

) /Qw(u;
(a—i—aé))/u”(w
Q

(-2t

It follows that M, (Fy) = oo, because ty | co.
B. Assume that litgioréf @ = 00. Then ¢*(s) < oo for all s > 0 and one can
repeat the argument of the subcase 10 of A.
(ii) Since AFy = F)4 and 9(Ag) = MI(g) for A > 0, by (i)
1Fyllaz, = imf{ A1+ M, (AFy)) |

= inf{ AL (L + g (M0(9)) } = 19(9) -
(iii) Similarly by (ii) we get B
I1Fy gz, = inf{A > 0: My (Fy/2) < 1}
= inf{A > 0 mye (9(9)/) < 1} = [[9(9)l+-

(iv) Combining Theorem 1.3 and Lemma 2.1 and using the Fatou lemma we
get

Par, (Fy) = supd] [ aw)d(a)w)dul :w € B9, mfu) < 1)
Thus for € > 0 there exists ug € E¥ with my(ug) < 1 such that
€
) Par, (Fy) < [ o)l o)) du+ 5.

Next, by Lemma 2.1 there exists ho € L¥?(X) with hg < |ug| such that

(4) / |uo(w)d(g)(w) dp < I/ ho(w), g(w)) dp| + -

Thus by (3) and (4), PMw (Fy) < Jolho(w), g(w))] + ¢ and since hg € E¥(X)
the proof is complete. O
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3. Singular linear functionals on Orlicz-Bochner spaces

Definition 3.1 (see [27, Definition 2.3]). A functional F' € L¥(X)™ is said to
be singular if there exists an ideal B of L¥(X) with supp B =  and such that
F(f) =0 for all f € B. The set consisting of all singular functionals on L¥(X)
will be denoted by L?(X); and called the singular dual of L¥(X). L¥P(X)7 is

s

an ideal of L¥(X)™ (see [27, Theorem 2.8]).

The set L{ (X) = {f € L¥(X) : My(f) < oo} is an absolutely convex absorbing
subset of L¥(X). Let K, stand for its Minkowski functional, i.e., for f € L¥(X)
Ko(f) =inf{A > 0: My(f/\) < oo}

Clearly Ko (f) < |flpe(x) for f € LP(X) and E¥(X) = ker K.
Lemma 3.1. Let B be an ideal of L¥(X') with supp B = § and let My(f) < oo.
Then for each € > 0 there exists h € B such that M,(f —h) <e.

PROOF: Let B = {u € L¥: Jul < h for some h € B}. Then B is an ideal of L¥
with supp B = Q and B = B(X) = {h € L?(X): h € B} (see [27, Lemma 1.1]).
Since supp B = €2 there exists a sequence (€,,) in ¥ such that Q, 1 Q, () < oo
with xq, € B for n € N (see [37, Theorem 86.2]). For n € N let

flw) if f(w)<n and w e Qy,

0 elsewhere.

) = {

Since ]Tn < nxgq, we get fn € £~3, so fn € B forn € N. By the Lebesgue dominated
convergence theorem My (f — fn) — 0, s0 My(f — fno) < € for some ng € N. [

Theorem 3.2. Let F' € L¥(X)3 . Then
Pap, (F) = sup{|F(f)] : f € L¥(X), Mp(f) < o0}
=sup{|F(f)] : f € L¥(X), Ko(f) <1}

PROOF: Since F' € L¥(X)3, F(h) =0 for all h € B, where B is an ideal of L¥(X)
with supp B = Q. Let f € L¥(X) with K,(f) <1, and let € > 0 be given. Then

€ L§(X), ie., My( -) < oco. In view of Lemma 3.1 there exists

f
Ko(f)+
— h) < 1. Hence

!
Ko(f)+e

h € B such that Mo( gty

f _ f 1
® _‘F( o(f) +e h)‘_’F(KSD(f)—I—E)‘_Kgo(f)—kalF(f)l'
It follows that |F'(f)| < Py, (F) - Ko(f) < Ppp,(F). Hence sup{[F(f)| : f €
L?(X), Kp(f) <1} < Py, (F), and the proof is complete. O

Py (

For a non-empty subset A of L¥(X) let A+ stand for its annihilator in L¥ (X )*
ie., At ={F e L¥(X)*: F(f) =0 for all fc A}.
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Corollary 3.3. L¥(X)y = (L?(X), K,)* = E¥(X)*

PROOF: Let F € L¥(X)7. Then for f € L¥(X) and £ > 0 we have Mw(m)
< 00, so by Theorem 3.2 [F(f)| < Py, (F) - Ko(f). Thus F € (L¥(X), Ky)*, so
the inclusion L¥(X)3 C (L¥(X), Ky,)* holds.

To show that (L?(X), Ky)* C E?(X)* holds let F € (L¥(X), Ky)*. Then
|F(f)| < M-Ky(f) for some M > 0 and all f € L¥(X). Hence for f € E¥(X) =
ker K, we have F(f) =0, so F' € E¥(X)+

Since E¥ (X)L c L¥(X)Y, the proof is complete. O

Theorem 3.4. For F' € L¥(X)3 we have

s

Mo(F) = Par, (F) = | Fllgz, = 1Pl

PRrOOF: To prove that My(F) > Py, (F) let € > 0 be given. Then by The-
orem 3.2 there exists f € L¥(X) with My(f) < oo and such that Py, (F) <
|F(f)| + 5. By Lemma 3.1 there exists h € E¥(X) such that My(f —h) < 5.
Since L¥(X)y = E¥(X)* (see Corollary 3.3) we get Py, (F) < [F(f = W) + 5.
Hence My (F) > |F(f —h)| — My(f —h) > Py, (F) — €. In view of Theorem 3.2
the inequality M, (F) < Py, (F) holds, so My(F) = Py, (F).

Hence My,(AF) = AMy(F) for A > 0, because Pyp, is a norm on L¥(X)*.
Thus we get

1Pl = inf {30+ X, () } = W o(F)
and

1PNz, = (A > 0 M (F) < A} = M ().

4. Topological dual of Orlicz-Bochner spaces

We start with some results concerning Mackey topologies of Orlicz-Bochner
spaces. Let us recall that the Mackey topology 77, of a topological vector space
(L, &) is the finest locally convex topology on L that produces the same continuous
linear functionals as the original topology &.

The next theorem will be of importance (see [29, Theorem 2.4, Theorem 3.4],
[11, Theorem 5.1, Theorem 5.3]).

Theorem 4.1 (cf. [11]).
(1) The Mackey topology Tpe(x) of (E¥(X), Tuo(X)|pe(x)) coincides
with the topology T5(X)|pe(x) induced from (L (X)), rJ’g( ), Le, Tpe(x) =

T5(X)|ge(x)- Hence Tpe(x) is normable iff lim inf £ ( ) >

t—o0
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(ii) The Mackey topology Tr+(x) of (L¥(X),Ty(X)) coincides with the supre-
mum of Tz(X)| e (x) and the topology m,(X) of the seminorm Ko, i.e., Tre(x) =
To(X)|Le(x) V T (X).

Theorem 4.2 (see [29, Corollary 2.5]). The following statements are equivalent:
(i) (L¥(X),Tp(X)) is locally convex;

(ii) (EY(X),To(X)|pe(x)) is locally convex;

(iil) ¢ is equivalent to p.

Now, we are ready to state our main result that extends the well known results
concerning the dual of scalar Orlicz spaces (cf. [2], [14], [26], [32], [33]).

Theorem 4.3. (i) Let litm inf @ > 0. Then
—00
LA(X)" = L?(X)y ® L¥(X)T
(i) Let lim inf € — 0. Then L¥(X)* = L¥(X)7
— 00

PrOOF: (i) Let F € L¥(X)*. Then by Theorem 4.1(i) the functional Fy =
Flpe(x) restricted to E¥(X) is T5(X)|ge(x)-continuous. Since E¥(X) —
E?(X), by the Hahn-Banach extension theorem there exists a || - || L7 (x)-conti-
nuous linear functional Fg on E¥(X) such that F(h) = Fy(h) for all h € E?(X).

It is known that E¥ = (L?), (= the || - ||l -closed ideal of absolutely con-
tinuous elements of L?) and the identity (E?)’ = L¥ holds (see [18, Theo-
rem 2.3.2]), where (E?)’ stands for the Kéthe dual of E¥. Hence by [6, Corol-
lary 4 1] [5 Theorem 7] there exists a unique gg € ch* (X, X) such that Fo(h) =
Jo (h( w)) dp for all h € E¥(X). Hence Fy(h) = [o(h( w)) dp for all
h € E@(X). Thus F'(h) = Fyo(h) for all h € E@( ), where Fgo e LP(X)y
(see Theorem 2.1). Let Fs(f) = F(f) — Fgo(f) for all f € L¥(X). Thus
Fs(h) = 0 for all h € E¥(X), so Fs € E?(X)+ = L¥(X)3 (see Corollary 3.3).
Since L¥(X)y N LP(X)3 = {0} (see [27, Theorem 2.9]), the identity L¥(X)* =
LP(X)y & L¥(X)3 holds, as desired.

(ii) In view of Theorem 4.1(ii) the Mackey topology 77« (x) is generated by the
seminorm K, so by Corollary 3.3, L¥(X)* = (L¥(X), K,)* = L¥Y(X)3 . O
Corollary 4.4. The following statements are equivalent:

(i) litminfﬂ = 0;
(i) LP(X)* = L7(X)3s
(iif) L¥(X)n = {0}.
PRrROOF: (i) = (ii) See Theorem 4.3.
(i) = (ifi) We have L¥(X)y = L#(X)* N L?(X)Y = {0}.
(iii) = (i) Let 1itminf@ > 0. Then by Theorem 2.1. L#(X)7 # {0}. O
—00
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Corollary 4.5. The following statements are equivalent:
(i) ¢ € Ag;

(i) L¥(X)5" = {0};

(iif) L¥(X)* = L¥(X)y
PROOF: (i) = (ii) We know that E¥(X) = L¥(X), so LY(X)y = E?(X)+ = {0}
(see Corollary 3.3).
(ii) = (iii) It follows from Theorem 4.3.
(ifi) = (ii) We have L?(X)y = L?(X)* N L¥(X)T = {0}.
(ii) = (i) Assume that ¢ ¢ Ag. Then E¥(X) G L?(X). Since E¥(X) = ker K,
E¥(X) is Ky-closed subspace of L¥(X). Hence for each f € L¥Y(X) \ E¥(X)
there exists F' € (L¥(X), K,)* = L¥(X)3 such that F(f) =1 and F(h) = 0 for
all h € E¥(X) (see [36, 2.3.9]). Thus L¥(X)3 # {0}. O

Combining Theorem 4.3, Corollary 4.4 and Corollary 4.5 we get:
Corollary 4.6 (cf. [10], [11], [34]). The following statements are equivalent:

(i) L#(X)* ={0};
(i) liminf £ =0 and ¢ € Ag.

The basic properties of the conjugate modular M, and the norms || - Hﬁw’
I Iz, and Py, on L#(X)* are described by the following theorem.
@

Theorem 4.7. Assume that litminf@ >0 and ¢ ¢ Ay. Let F = Fy + F,
—00

where g € L¥" (X*, X) and Fys € L¥(X)y. Then
(1) My(F) = My(Fg) + Mp(Fs); —
(i) [[Flllxz, = mE{A > 0:mex(9(g)/A) + A7 My (Fs) <1}
i) 1Py, = I1Fylyr, + I1F g
(iv) Py (F) = Pur, (Fg) + Pa, (Fs)-
PrROOF: (i) To prove that My (F) > My(Fy) + M, (Fs) let € > 0 be given.
Then there exists h € L¥(X) with M,(h) < co and such that My (Fy) — & <

Fy(h) — My(h). Since supp E¥ = €, there exists a sequence () in X such that
0, T9Q, xq, € EY forn € N. Let

h(™) (W) = { h(w) if h(w)<n and w € Qy,

0 elsewhere.

—~~
=R

Then h(™ € E#(X) for n € N and h(® 1 k. Hence Fy(h™) — Fy(h) and
Mw(h(”)) 1 My(h), so there exists ng € N such that for by = h(m0) € E9(X) we
have

(1) M¢(Fg) -+ < Fg(hl) - M<p(h1)-

> ™
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Moreover, there exists ho € L¥(X) with M, (ho) < co and such that

() My(Fs) — + < Fs(h) — My(ha).

> ™

Since supp E¥ = ) there exists a sequence (up) in E¥ such that 0 < wuy, 1 Eg
(see [17, Lemma 4.3.1]). Let By = {w € Q: 2up(w) > ha(w)}. Then By T, Q,

xB,h2 T hy and xp, ha < 2un € E¥, so xp, ha € E?(X). Let A, = Q\ By
for n € N. Then A, Ny 0, so Fy(xa,h1) — 0 and Fy(xa, h2) — 0, because

XAnﬁl ﬁ 0, XAnEQ ﬂ) 0. Choose ng € N such that

3) [Fg(XA,, )] <

no

and |Fg(XA ha)| <

no

NI
NI

Let us put

h if weQ\ Ap, = Bng,
ho(w)—{ 1(w) if w \ no no

hg(w) if we Ano-

Then My (ho) < M<P(XQ\AnOh1) + My(x A, h2) and since hy € E¥(X) and
X\ A he € E¥(X), by (1), (2) and (3) and Corollary 3.3 we get

My(F) > F(ho) — My(ho)
> Fg(Xa\An, 71) + Fg(Xan,h2) + Fs(xa\a,, 1) + Fs(xa,, h2)
- Mcp(XQ\AnO h1) — Mcp(XAnO h2)
> (Fy(h1) — My(h1)) + Fg(XAnO h1) + Fg(XAnO ha) + (Fs(XAnO h2)

+ Fs(xa\ A, h2) — My (ho))
3 3 3

On the other hand, since My (Fs) = sup{|Fs(f)| : My(f) < oo} (see Theorems
3.2 and 3.4) we get

My (F) <sup{(|Fy(f)| = Mp(f)) + |Fs(f)| : f € LP(X), My(f) < oo}
<sup{[Fg(f)| = Mp(f) : Mp(f) < 0o} +sup{[Fs(f)] : Mp(f) < oo}
= My (Fy) + My(Fs).

Thus the identity (i) is proved.
By making use of (i) and Theorem 2.4, and Theorem 3.4 we have

Iz, = inf{A > 0: Mp(A~"Fy) + (A1 Fy) < 1)
=inf{\ > 0: mu(A"10(g)) + A1, (Fs) < 1}
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(iii) Similarly, in view of (i) and Theorem 2.4 and Theorem 3.4 we have:
1Py, = inf O3 (T, Fy) + XF,(F) + 1)}
= inf (ATY M H(AFy) + 1) + My (Fs)}
= 1Fyllzz, + Mo(Fs) = | Fyllgz, + 1 Fsllgz, -

1v o prove that Py < Py + Py (Fs) let € > e given. en
i T thF Png PwFl 0 be gi Th

in view of Theorem 2.1 there exists f; € E¥(X) with M,(f1) < 1 and such that

Py, (Fy) — 5 < Fy(f1).

| ™

In view of Theorem 2.2, Fj; is modular continuous, so there exists 0 < ¢§ <
My (h1) such that |Fy(f)| < § whenever My(f) < 0. Moreover, there exists a
subset A € ¥ such that My(xf1) = 0, because i is atomless. Hence M (f1) =

Mp(xafi) + My(xyaf1), so n = Mp(xa\af1) < 1. Let us put fi = xo\a/1-

Then Fy(f) = Fy(f1) — F(xaf1) > Fy(f1) — - Thus by (4)

Pur, (Fg) — < Fy(f1)-

€
4

Moreover, there exists fo € L¥(X) with M,(f2) < 1 and such that

Par, (Fy) — © < Fy(fa).

] ™

Then there exists a sequence (vy,) in E¥ such that 0 < v, 1 fa (see [17,
Lemma 11.3.1]). Let Cp, = {w € Q: 2vp(w) > fa(w)}. Then Cp TQ, xc, f2 T fo
and x¢, f2 < 2v, € E?, 50 X, f2 € E¥(X). Let Dy, = Q\ Cy. Since Dy N\ 0,

there exists ng € N such that

[Eg(xD,, f1)| < 7 and |Fy(xp,, f2)| <

| ™
] ™

My(XD,, f2) <1 =1

Let us put

() i weQ\ Dyy = Crg
fow) = { fo(w) if w € Dy,.
Then My(fo) < Mgo(XQ\Dnof{) + My(xD,, f2) < My(f1) + Myp(xp,, f2) <
n+(1—n) = 1. Since f; € E®(X) and X0\ p,, f2 = XCy, f2 € E¥(X) by (5), (6),

no
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(7) and (8) we get
Py, (F) > F(ho) = Fy(ho) + Fs(ho)
= Fy(XQ\D,, /1) + Fg(XDpy f2) + Fs(xon\ D, f1) + Fs(X Dy f2)
= Fg(f1) = Fg(XD,, /1) + Fg(XD,, f2) + Fs(xD,, f2)

+ Fs(xa\p,,, /2)
e € ¢ €
ZPMW(FS)_Z_Z_Z+PM‘P(FS)_Z
= PM¢(Fg) + PM¢(FS) —€
Since Py, (F) < Par, (Fyg) + Pag, (Fs), the proof is complete. O

We know that (L¥(X), Py,) is a Banach space (see Theorem 1.3). Assume
)

now that litrn inf %
—00

Pp: LY(X)* — L¥(X)* by Py(F) = Fy, whenever F' = Fy + Fs € LY(X)* =

LP(X)y ©L¥(X)7, and for each F' € L¥(X)* by Theorem 4.7 we have Py (F') =

Prt, (Pa(EF)) + P, (F = Po(F)) (vesp. || Fliyz = 1 Pa(F)llgz, +1F=Pu(F)ll37,)-

It means that Py is a continuous L-projection in (L¥(X)*, Ppz,) (vesp. (L¥(X)*,

Il - ”Mw)) (see [3, Definition 1.3]).

Moreover, L¥(X); and L¥(X)y are topologically complementary in

(LP(X)*, Pag,) (resp. (LX), || - lig7,)); see [36, 5.3]. It follows that both
L?(X)y and L¥(X)5" are closed in (L¥(X)*, Ppy,) (vesp. (LP(X)* | - ”Mw))
(see [36, Remark 5.3.9]).

> 0. In view of Theorem 4.3 one can define a projection

5. Applications

In this section we present some consequences of Theorems 4.3 and 4.7. First
we shall show that continuous linear functionals on £¥(X) have the unique Py, -
norm preserving extension to L?(X) (cf. [32, Theorem 5.3])

Theorem 5.1. Assume that litrninf@ > 0 and ¢ ¢ Ag. Let G be a |- |,-
—00

continuous linear functional on E¥(X). Then there exists a unique |-|So—cont1'nuous
linear functional F on L¥(X) such that F(h) = G(h) for all h € E¥(X) and

Prp, (F) = Pag, (G) = sup{|G(h)[ : h € E¥(X), Mp(h) <1},
Proor: In view of Theorem 4.1(1) (E¥(X),Tu(X)|pe(x))" = (E¥(X),
T5(X)|ge(x))*- It is known that (E¥)" = L¥" (see [25, Theorem 3. 1]) =) by 6,

Corollary 4.1] there exists g € L? (X*, X) such that G(h) = [o(h( )) dp
for h € E¥(X). Let us put

FUN = [ (@) g(e)) dn for all f € L7(X),



Topological dual of non-locally convex Orlicz-Bochner spaces

Then F(h) = G(h) for all h € E¥(X) and F' € L?(X); (see Theorem 2.2).
Moreover, by Theorem 2.4(iv) Py, (F) = P, (G).

Now assume that F is another such extension of G, and let F; = F — F. Then

Fy € LP(X)3 (see Corollary 3.3) and by Theorem 4.7 Py (F) = PMW(F) =

Prp, (F) + Py, (Fy), so Py, (F1) = 0. Hence Iy =0, so F' = F), as desired. [

The next theorem gives an inner characterization of singular functionals on
L#(X) in terms of their norms || - |57 and || - |||H¢ (cf. [32, Theorem 3.5]).
©

Theorem 5.2. Assume that lim £ = co. Then for F € L¥(X)* the following

t—o0 t
statements are equivalent:
(i) F e L?(X)5;
@) 1Fl57, = 17z,

PRrROOF: (i) = (ii) See Theorem 3.4.

(ii) = (i) Let F = Fy4 + F, where g € L¥(X); and Fs € L¥(X);. Then by
Theorem 4.3

1PNz, < IEslk, + IEsllgz, < WFligz, + 1 Fslsz, = 1Flizz,

Since |||F5|||H¢ = HFSHHW (see Theorem 3.4) we conclude that |||F9|||H(p =
”FQHHW so in view of Theorem 2.4 the identity [[|J(g)|[|,* = [[9(g)[|o* holds. It

follows that ¥(g) = 0 (see [32, Lemma 1]). Hence g =0, i.e., F = Fs; € L¥(X)7,
as desired. O

—

Theorem 5.3. Assume that litminf@ > 0 and ¢ ¢ Ay. Let F = Fyy +
—00

FQ, where go € L¥ (X*,X) and FQ € L¥(X)y. Then Fy, (resp. F?) is the
unique best approximant of F with respect to L¥(X)7 (resp. L?(X)3’), whenever

n
L#(X)* is provided with the norms Py, and || - HMW

PROOF: In view of Theorem 4.7, for any g € L¥" (X*, X) we have Py, (F—Fg) =
Pap, (Fgo+F2—Fg) = Pag, (Fgo — Fg)+ Py, (F?). Hence dist Pu, (FLLP(X)Y)
Puy, (FQ) = Py, (F — Fy).

On the other hand, assume that distpr (F\LP(X)}) = Pup, (F — Fg) for
some g € L¥" (X*, X). Hence Py (FQ) = Py, (F—Fy) = Py, (Fgo + FO—Fy) =
P, (Fgo — Fg) + Py, (F9). Tt follows that P, (Fgy — Fg) = 0, 50 Fygy = Fy, as
desired.

Similarly in the other cases. O
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