Previous |  Up |  Next

Article

Keywords:
rotative mappings; fixed points
Summary:
Let $C$ be a nonempty closed convex subset of a Banach space $E$ and \linebreak $T:C\rightarrow C$ a $k$-Lipschitzian rotative mapping, i.e\. such that $\|Tx-Ty\|\leq k\cdot \|x-y\|$ and $\|T^n x-x\|\leq a\cdot \|x-Tx\|$ for some real $k$, $a$ and an integer $n>a$. The paper concerns the existence of a fixed point of $T$ in $p$-uniformly convex Banach spaces, depending on $k$, $a$ and $n=2,3$.
References:
[1] Barros-Neto J.: An Introduction to the Theory of Distributions. M. Dekker, New York, 1973. MR 0461128 | Zbl 0512.46040
[2] Dunford N.: Linear Operators. vol. I, Interscience, New York, 1958. Zbl 0635.47003
[3] Duren W.L.: Theory of $H^p$ Spaces. Academic Press, New York, 1970. MR 0268655
[4] Goebel K.: Convexity of balls and fixed point theorems for mappings with nonexpansive square. Compositio Math. 22 (1970), 269-274. MR 0273477 | Zbl 0202.12802
[5] Goebel K., Kirk W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics 28, Cambridge University Press, London, 1990. MR 1074005
[6] Goebel K., Koter M.: A remark on nonexpansive mappings. Canad. Math. Bull. 24 (1981), 113-115. MR 0611220 | Zbl 0461.47027
[7] Goebel K., Koter M.: Fixed points of rotative Lipschitzian mappings. Rend. Sem. Mat. Fis. di Milano 51 (1981), 145-156. MR 0708040 | Zbl 0535.47031
[8] Goebel K., Złotkiewicz E.: Some fixed point theorems in Banach spaces. Colloquium Math. 23 (1971), 103-106. MR 0303367
[9] Górnicki J.: Fixed points of involutions. Math. Japonica 43 (1996), 151-155. MR 1373993
[10] Górnicki J., Rhoades B.E.: A general fixed point theorem for involutions. Indian J. Pure Appl. Math. 27{(1)} (1996), 13-23. MR 1374884
[11] Kirk W.A.: A fixed point theorem for mappings with a nonexpansive iterate. Proc. Amer. Math. Soc. 29 (1971), 294-298. MR 0284887 | Zbl 0213.41303
[12] Komorowski T.: Selected topics on Lipschitzian mappings (in Polish). Thesis, Univ. M. Curie-Sklodowskiej, Lublin, 1987.
[13] Koter M.: Fixed points of Lipschitzian $2$-rotative mappings. Bolletino U.M.I., Ser. VI, 5 (1986), 321-339. MR 0897203 | Zbl 0634.47053
[14] Lim T.C., Xu H.K., Xu Z.B.: An $L^p$ inequality and its applications to fixed point theory and approximation theory. in: Progress in Approximation Theory (P. Nevai and A. Pinkus, eds.), Academic Press, New York, 1991, pp.609-624. MR 1114800 | Zbl 0801.46012
[15] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces, II - Function Spaces. Springer-Verlag, Berlin, 1979. MR 0540367 | Zbl 0403.46022
[16] Linhart J.: Fixpunkte von Involutionen $n$-ter Ordnung. Österich. Acad. Wiss. Math.-Natur. kl. S-B 180 (1973), 89-93. MR 0303369
[17] Prus B., Smarzewski R.: Strongly unique best approximations and centers in uniformly convex spaces. J. Math. Anal. Appl. 121 (1987), 10-21. MR 0869515 | Zbl 0617.41046
[18] Smarzewski R.: Strongly unique minimization of functionals in Banach spaces with applications to theory of approximation and fixed points. J. Math. Anal. Appl. 115 (1986), 155-172. MR 0835591 | Zbl 0593.49004
[19] Smarzewski R.: Strongly unique best approximation in Banach spaces, II. J. Approx. Theory 51 (1987), 202-217. MR 0913618 | Zbl 0657.41022
[20] Smarzewski R.: On the inequality of Bynum and Drew. J. Math. Anal. Appl. 150 (1990), 146-150. MR 1059576
[21] Xu H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16 (1991), 1127-1138. MR 1111623 | Zbl 0757.46033
[22] Zălinescu C.: On uniformly convex function. J. Math. Anal. Appl. 95 (1983), 344-374. MR 0716088
Partner of
EuDML logo