Previous |  Up |  Next

Article

Keywords:
cardinal inequality; Hausdorff space
Summary:
The aim of this paper is to show, using the reflection principle, three new cardinal inequalities. These results improve some well-known bounds on the cardinality of Hausdorff spaces.
References:
[1] Dow A.: An introduction to applications of elementary submodels to topology. Topology Proc. 13 (1988), 17-72. MR 1031969 | Zbl 0696.03024
[2] Dow A.: More set-theory for topologists. Topology Appl. 64 (1995), 243-300. MR 1342520 | Zbl 0837.54001
[3] Engelking R.: General Topology. Revised and completed edition. Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). MR 1039321
[4] Fedeli A., Watson S.: Elementary submodels and cardinal functions. Topology Proc. 20 (1995), 91-110. MR 1429175 | Zbl 0894.54008
[5] Hodel R.E.: Cardinal Functions I. Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.), Elsevier Science Publishers, B.V., North Holland (1984), 1-61. MR 0776620 | Zbl 0559.54003
[6] Hodel R.E.: Combinatorial set theory and cardinal functions inequalities. Proc. Amer. Math. Soc. 111 (1991), 567-575. MR 1039531
[7] Juhàsz I.: Cardinal Functions in Topology - ten years later. Mathematical Centre Tracts 123, Amsterdam (1980). MR 0576927
[8] Sun S.H.: Two new topological cardinal inequalities. Proc. Amer. Math. Soc. 104 (1988), 313-316. MR 0958090 | Zbl 0669.54002
[9] Watson S.: The construction of topological spaces: Planks and Resolutions. Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), Elsevier Science Publishers, B.V., North Holland (1992), 675-757. MR 1229141 | Zbl 0803.54001
[10] Watson S.: The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology. Topology Appl. 58 (1994), 25-34. MR 1280708 | Zbl 0836.54004
Partner of
EuDML logo