Article
Keywords:
continuum; contractible; curve; deformation; dendroid; fixed; homotopy; steady
Summary:
Conditions are investigated that imply noncontractibility of curves. In particular, a plane noncontractible dendroid is constructed which contains no homotopically fixed subset. A new concept of a homotopically steady subset of a space is introduced and its connections with other related concepts are studied.
References:
[1] Borsuk K., Jaworowski J.W.:
On labil and stabil points. Fund. Math. 39 (1952), 159-175.
MR 0056283
[2] Charatonik J.J.:
Problems and remarks on contractibility of curves. General Topology and its Relations to Modern Analysis and Algebra IV, Proceedings of the Fourth Prague Topological Symposium 1976 Part B Contributed Papers Society of Czechoslovak Mathematicians and Physicists (1977), 72-76.
MR 0464197 |
Zbl 0373.54029
[4] Charatonik J.J., Grabowski Z.:
Homotopically fixed arcs and contractibility of dendroids. Fund. Math. 100 (1978), 229-239.
MR 0509549
[5] Charatonik J.J., Lee T.J., Omiljanowski K.:
Interrelations between some noncontractibility conditions. Rend. Circ. Mat. Palermo 41 (1992), 31-54.
MR 1175586 |
Zbl 0795.54048
[6] Czuba S.T.:
R-continua and contractibility of dendroids. Bull. Acad. Polon. Sci. Ser. Sci. Math. 27 (1979), 299-302.
MR 0552053 |
Zbl 0424.54026
[7] Fitzpatrick B., Jr., Lelek A.:
Some local properties of Suslinian compacta. Colloq. Math. 31 (1974), 189-197.
MR 0367943 |
Zbl 0292.54036
[8] Hopf H., Pannwitz E.:
Über stetige Deformationen von Komplexen in sich. Math. Ann. 108 (1933), 433-465.
MR 1512859 |
Zbl 0006.42203
[11] Oversteegen L.G.:
Non-contractibility of continua. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26 (1978), 837-840.
MR 0518989 |
Zbl 0404.54031