Previous |  Up |  Next

Article

Keywords:
continuum; contractible; curve; deformation; dendroid; fixed; homotopy; steady
Summary:
Conditions are investigated that imply noncontractibility of curves. In particular, a plane noncontractible dendroid is constructed which contains no homotopically fixed subset. A new concept of a homotopically steady subset of a space is introduced and its connections with other related concepts are studied.
References:
[1] Borsuk K., Jaworowski J.W.: On labil and stabil points. Fund. Math. 39 (1952), 159-175. MR 0056283
[2] Charatonik J.J.: Problems and remarks on contractibility of curves. General Topology and its Relations to Modern Analysis and Algebra IV, Proceedings of the Fourth Prague Topological Symposium 1976 Part B Contributed Papers Society of Czechoslovak Mathematicians and Physicists (1977), 72-76. MR 0464197 | Zbl 0373.54029
[3] Charatonik J.J.: Contractibility of curves. Matematiche (Catania) 46 (1991), 559-592. MR 1216780 | Zbl 0776.54026
[4] Charatonik J.J., Grabowski Z.: Homotopically fixed arcs and contractibility of dendroids. Fund. Math. 100 (1978), 229-239. MR 0509549
[5] Charatonik J.J., Lee T.J., Omiljanowski K.: Interrelations between some noncontractibility conditions. Rend. Circ. Mat. Palermo 41 (1992), 31-54. MR 1175586 | Zbl 0795.54048
[6] Czuba S.T.: R-continua and contractibility of dendroids. Bull. Acad. Polon. Sci. Ser. Sci. Math. 27 (1979), 299-302. MR 0552053 | Zbl 0424.54026
[7] Fitzpatrick B., Jr., Lelek A.: Some local properties of Suslinian compacta. Colloq. Math. 31 (1974), 189-197. MR 0367943 | Zbl 0292.54036
[8] Hopf H., Pannwitz E.: Über stetige Deformationen von Komplexen in sich. Math. Ann. 108 (1933), 433-465. MR 1512859 | Zbl 0006.42203
[9] Lelek A.: Strongly homotopically stabile points. Colloq. Math. 37 (1977), 193-203. MR 0474234 | Zbl 0376.55012
[10] Nadler S.B., Jr.: Continuum Theory. M. Dekker (1992). MR 1192552 | Zbl 0757.54009
[11] Oversteegen L.G.: Non-contractibility of continua. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26 (1978), 837-840. MR 0518989 | Zbl 0404.54031
Partner of
EuDML logo