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On the cardinality of Hausdorff spaces

Alessandro Fedeli

Abstract. The aim of this paper is to show, using the reflection principle, three new
cardinal inequalities. These results improve some well-known bounds on the cardinality

of Hausdorff spaces.
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Two of the most known inequalities in the theory of cardinal functions are

the Hajnal-Juhàsz’s inequality [7]: “For X ∈ T2, |X | ≤ 2c(X)χ(X)” and the

Arhangel’skii’s inequality [5]: “For X ∈ T2, |X | ≤ 2L(X)t(X)ψ(X)”.
In this paper we will use the language of elementary submodels (see [4], [10], [1]

and [2]) to establish three new cardinal inequalities which generalize the results
mentioned above. We refer the reader to [3], [5], [7] for notations and termi-
nology not explicitly given. χ, c, ψ, t, L and πχ denote character, cellularity,
pseudocharacter, tightness, Lindelöf degree and π-character respectively.

Definitions. (i) Let X be a Hausdorff space.
The closed pseudocharacter of X , denoted ψc(X), is the smallest infinite car-

dinal κ such that for every x ∈ X there is a collection Ux of open neighbourhoods
of x such that

⋂
{U : U ∈ Ux} = {x} and |Ux| ≤ κ ([7]).

The Hausdorff pseudocharacter of X , denoted Hψ(X), is the smallest infinite
cardinal κ such that for every x ∈ X there is a collection Ux of open neighbour-
hoods of x with |Ux| ≤ κ such that if x 6= y, there exist U ∈ Ux, V ∈ Uy with
U ∩ V = ∅ ([6]).
Clearly ψc(X) ≤ Hψ(X) ≤ χ(X) for every Hausdorff space X .

(ii) Let X be a topological space, ac(X) is the smallest infinite cardinal κ such
that there is a subset S of X such that |S| ≤ 2κ and for every open collection U

in X there is a V ∈ [U ]≤κ with
⋃
U ⊂ S ∪

⋃
{V : V ∈ V}.

Observe that ac(X) ≤ c(X) for every space X .

Theorem 1. If X is a T2-space then |X | ≤ 2ac(X)Hψ(X).

Proof: Let λ = ac(X)Hψ(X), κ = 2λ, let τ be the topology on X and let S

be an element of [X ]≤κ witnessing that ac(X) ≤ λ. For every x ∈ X let Bx be
a collection of open neighbourhoods of x with |Bx| ≤ λ such that if x 6= y then
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there exist U ∈ Bx, V ∈ By such that U ∩ V = ∅, and let f : X → P(τ) be the
map defined by f(x) = Bx for every x ∈ X .
Let A = κ ∪ {S,X, τ, κ, f} and take a setM such thatM ⊃ A, |M| = κ and

which reflects enough formulas to carry out our argument. To be more precise we
ask thatM reflects enough formulas so that the following conditions are satisfied:

(i) C ∈ M for every C ∈ [M]≤κ;
(ii) Bx ∈ M for every x ∈ X ∩M;
(iii) if B ⊂ X and B ∈ M then B ∈ M;
(iv) if A ∈ M then

⋃
A ∈ M;

(v) if B is a subset of X such that X ∩M ⊂ B and B ∈ M then X = B;
(vi) if E ∈ M and |E| ≤ κ then E ⊂ M.

Observe that by (ii) and (vi) By ⊂ M for every y ∈ X ∩M.

Claim: X ⊂ M (and hence |X | ≤ 2ac(X)Hψ(X)). Suppose not and take
p ∈ X \ M. Let Bp = {Bα}α<λ, clearly

⋂
{Bα : α < λ} = {p}. Now for

every α < λ let (X ∩ M)α = {y ∈ X ∩ M : ∃B ∈ By for which B ∩ Bα = ∅}.
For every y ∈ (X ∩ M)α choose a By,α ∈ By such that By,α ∩ Bα = ∅, clearly
Uα = {By,α : y ∈ (X ∩ M)α} covers (X ∩ M)α. Since ac(X) ≤ λ it follows

that there is a Vα ∈ [Uα]≤λ such that (X ∩M)α ⊂ S ∪
⋃
{V : V ∈ Vα}. Observe

that p /∈ S ∪
⋃
{V : V ∈ Vα} (S ∈ M and |S| ≤ κ so by (vi) S ⊂ M, moreover

⋃
{V : V ∈ Vα} ⊂ X \Bα). We have also

⋃
{V : V ∈ Vα} ∈ M (V ∈ M for every

V ∈ Vα, so by (iii) V ∈ M, therefore {V : V ∈ Vα} ⊂ M and {V : V ∈ Vα} ∈ M

by (i), hence by (iv)
⋃
{V : V ∈ Vα} ∈ M, so

⋃
{V : V ∈ Vα} ∈ M by (iii)).

Set Cα = S ∪
⋃
{V : V ∈ Vα} for every α < λ and observe that Cα ∈ M (recall

that S,
⋃
{V : V ∈ Vα} ∈ M). Now X ∩ M ⊂

⋃
{Cα : α < λ}, since

⋃
{Cα :

α < λ} ∈ M ({Cα : α < λ} ⊂ M, so by (i) {Cα : α < λ} ∈ M, hence by
(iv)

⋃
{Cα : α < λ} ∈ M) it follows by (v) that

⋃
{Cα : α < λ} = X . This is

a contradiction (p /∈
⋃
{Cα : α < λ}). �

Corollary 2 ([7]). If X is a T2-space then |X | ≤ 2c(X)χ(X).

Remark 3. The above result of Hajnal and Juhàsz has been improved also by

Hodel, in fact in [6] it is shown that |X | ≤ 2c(X)Hψ(X) for every Hausdorff
space X . It is clear that Theorem 1 generalizes also this result of Hodel.

Now let X be the Michael line, i.e. let X be R topologized by isolating the
points of R \ Q and leaving the points of Q with their usual neighbourhoods.

Then X is a normal space such that |X | = 2ac(X)Hψ(X) < 2c(X)Hψ(X).
Observe that in Theorem 1 Hψ(X) cannot be replaced by ψc(X), in fact for

every infinite cardinal κ there is a T3-space X with |X | = κ and ψ(X) = c(X) =
ac(X) = ω (see e.g. [5]).

Definition 4. LetX be a topological space, lc(X) is the smallest infinite cardinal
κ such that there is a closed subset F of X such that |F | ≤ 2κ and for every open

collection U in X there is a V ∈ [U ]≤κ with
⋃
U ⊂ F ∪

⋃
{V : V ∈ V}.
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Clearly ac(X) ≤ lc(X) ≤ c(X) for every space X .

Theorem 5. If X is a Hausdorff space then |X | ≤ 2lc(X)πχ(X)ψc(X).

Proof: Let λ = lc(X)πχ(X)ψc(X) and let κ = 2
λ, let τ be the topology on X

and let F be a closed subset of X with |F | ≤ κ and witnessing that lc(X) ≤ λ. For
every x ∈ X let Bx be a local π-base at x such that |Bx| ≤ λ, and let f : X → P(τ)
be the map defined by f(x) = Bx for every x ∈ X . Let A = κ ∪ {F,X, τ, κ, f}
and take a setM ⊃ A such that |M| = κ and which reflects enough formulas so
that the conditions (i)-(vi) listed in Theorem 1 are satisfied.

Claim: X ⊂ M (and hence |X | ≤ 2lc(X)πχ(X)ψc(X)). Suppose not and take
p ∈ X \ M. Let {Gα : α ∈ λ} be a family of open neighbourhoods of p such
that

⋂
{Gα : α ∈ λ} = {p}. Set Vα = X \ Gα and Sα = X ∩ M ∩ Vα for

every α ∈ λ. Now let Wα = {B : B ∈ By, y ∈ Sα ∧ B ⊂ Vα}, since lc(X) ≤ λ

it follows that there is a Vα ∈ [Wα]
≤λ such that

⋃
Wα ⊂ F ∪

⋃
{V : V ∈ Vα}.

Since Sα ⊂
⋃
Wα (let y ∈ Sα and U be an open neighbourhood of y, y /∈ Gα so

there is an open neighbourhood V of y such that V ∩ Gα = ∅, let B ∈ By such

that B ⊂ U ∩ V , ∅ 6= B ⊂ (
⋃
Wα) ∩ U and y ∈

⋃
Wα) it follows that Sα ⊂

F ∪
⋃
{V : V ∈ Vα}; moreover

⋃
{V : V ∈ Vα} ∈ M and p /∈ F ∪

⋃
{V : V ∈ Vα}.

Set Cα =
⋃
{V : V ∈ Vα}, since X ∩M ⊂ F ∪

⋃
{Cα : α < λ} and F ∪

⋃
{Cα :

α < λ} ∈ M it follows that F ∪
⋃
{Cα : α < λ} = X , a contradiction. �

By Theorem 5 it follows again that |X | ≤ 2c(X)χ(X) for every T2-space X .
Moreover we have the following

Corollary 6 ([6]). If X is a T3-space then |X | ≤ 2c(X)πχ(X)ψ(X).

Remark 7. A generalization of the inequality in corollary 6 has also been ob-

tained by Sun in [8]: “|X | ≤ 2c(X)πχ(X)ψc(X) for every Hausdorff space X”.
Note that even this result is a corollary of Theorem 5. Moreover if X is the

Michael line then |X | = 2lc(X)πχ(X)ψc(X) < 2c(X)πχ(X)ψc(X). Observe also that
the π-character cannot be omitted in Theorem 5 (see the comment at the end of
Remark 3).

Now let us turn our attention to the Arhangel’skii’s inequality: “For X ∈ T2,

|X | ≤ 2L(X)t(X)ψ(X)”.

Definitions. Let X be a topological space.
(i) ([8]) A subset A of X with |A| ≤ 2κ is said to be κ-quasi-dense if for

each open cover U of X there exist a V ∈ [U ]≤κ and a B ∈ [A]≤κ such that
(
⋃

V) ∪ B = X ; qL(X) is the smallest infinite cardinal κ such that X has a
κ-quasi dense subset.

(ii) aqL(X) is the smallest infinite cardinal κ such that there is a subset S of

X with |S| ≤ 2κ such that for every open cover U of X there is a V ∈ [U ]≤κ with
X = S ∪ (

⋃
V).

Clearly aqL(X) ≤ L(X) for every space X .
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Theorem 8. If X is a Hausdorff space then |X | ≤ 2aqL(X)t(X)ψc(X).

Proof: Let λ = aqL(X)t(X)ψc(X), κ = 2
λ, let τ be the topology on X and let

S be an element of [X ]≤κ witnessing that aqL(X) ≤ λ. For every x ∈ X let Bx be
a family of open neighbourhoods of x with |Bx| ≤ λ and

⋂
{B : B ∈ Bx} = {x},

and let f : X → P(τ) be the map defined by f(x) = Bx for every x ∈ X . Let
A = κ ∪ {S,X, τ, κ, f} and take a set M ⊃ A such that |M| = κ and which
reflects enough formulas so that the conditions (i)–(vi) listed in Theorem 1 are
satisfied. First observe that X ∩ M is a closed subset of X , although this fact
follows from a general result which can be found in [4] we give a proof of it for the

sake of completeness: let x ∈ X ∩M, since t(X) ≤ λ there is a C ∈ [X ∩M]≤λ

such that x ∈ C. Since C ∈ M (by (i)), it follows that C ∈ M (by (iii)). Now it
remains to observe that |C| ≤ κ (recall that t(X)ψc(X) ≤ λ) and hence by (vi)
x ∈ C ⊂ X ∩M.
We have done if we show that X ⊂ M. Suppose there is a p ∈ X \M, for every

y ∈ X∩M letBy ∈ By such that p /∈ By . Since U = {By : y ∈ X∩M}∪{X\M} is

an open cover ofX and aqL(X) ≤ λ there is a V ∈ [U ]≤λ such that X = S∪(
⋃
V).

LetW = {By : By ∈ V}, since X∩M ⊂ S∪(
⋃

W) and S∪(
⋃

W) ∈ M it follows
that X = S ∪ (

⋃
W), a contradiction (p /∈ S ∪ (

⋃
W)). �

A consequence of Theorem 8 is the following generalization of the Arhangel’skii’s
inequality.

Corollary 9 ([8]). If X is a Hausdorff space then |X | ≤ 2qL(X)t(X)ψc(X).

Proof: It is enough to note that aqL(X) ≤ qL(X)t(X)ψc(X). �

Remark 10. Let κ be an infinite cardinal number and letX be the discrete space
of cardinality 2κ. This space shows that Theorem 8 can give a better estimation
than the one in Corollary 9.
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