Previous |  Up |  Next

Article

Keywords:
Riemannian geometry; homogeneous spaces; Einstein metrics; Stiefel manifolds
Summary:
A Stiefel manifold $V_k\bold R^n$ is the set of orthonormal $k$-frames in $\bold R^n$, and it is diffeomorphic to the homogeneous space $SO(n)/SO(n-k)$. We study $SO(n)$-invariant Einstein metrics on this space. We determine when the standard metric on $SO(n)/SO(n-k)$ is Einstein, and we give an explicit solution to the Einstein equation for the space $V_2\bold R^n$.
References:
[1] Besse A.L.: Einstein Manifolds. Springer-Verlag, Berlin, 1987. MR 0867684 | Zbl 1147.53001
[2] Berger M.: Quelques formules de variation pour une structure riemannienne. Ann. Sci. Éc. Norm. Sup. 3 (1970), 285-294. MR 0278238 | Zbl 0204.54802
[3] Cheeger J., Ebin D.G.: Comparison Theorems in Riemannian Geometry. North-Holland, Amsterdam, 1975. MR 0458335 | Zbl 1142.53003
[4] James I.M.: The Topology of Stiefel Manifolds. Cambridge University Press, Lecture Note Series 24, Great Britain, 1976. MR 0431239 | Zbl 0337.55017
[5] Jensen G.R.: Einstein metrics on principal fibre bundles. J. Diff. Geom. 8 (1973), 599-614. MR 0353209 | Zbl 0284.53038
[6] Kobayashi S.: Topology of positively pinched Kähler manifolds. Tôhoku Math. J. 15 (1963), 121-139. MR 0154235 | Zbl 0114.37601
[7] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vol II. Interscience, New York, 1969. MR 0238225 | Zbl 0526.53001
[8] Kowalski O., Vlášek Z.: Homogeneous Einstein metrics on Aloff-Wallach spaces. Diff. Geom. Appl. 3 (1993), 157-167. MR 1243541
[9] Sagle A.A.: Some homogeneous Einstein manifolds. Nagoya Math. J. 39 (1970), 81-106. MR 0271867 | Zbl 0198.54801
[10] Wang M.: Some examples of homogeneous Einstein manifolds in dimension seven. Duke Math. J. 49.1 (1982), 23-28. MR 0650366 | Zbl 0488.53035
[11] Wang M., Ziller W.: On normal homogeneous Einstein metrics. Ann. Sci. Éc. Norm. Sup. 18 (1985), 563-633. MR 0839687
Partner of
EuDML logo