Article
Keywords:
Riemannian geometry; homogeneous spaces; Einstein metrics; Stiefel manifolds
Summary:
A Stiefel manifold $V_k\bold R^n$ is the set of orthonormal $k$-frames in $\bold R^n$, and it is diffeomorphic to the homogeneous space $SO(n)/SO(n-k)$. We study $SO(n)$-invariant Einstein metrics on this space. We determine when the standard metric on $SO(n)/SO(n-k)$ is Einstein, and we give an explicit solution to the Einstein equation for the space $V_2\bold R^n$.
Related articles:
References:
[2] Berger M.:
Quelques formules de variation pour une structure riemannienne. Ann. Sci. Éc. Norm. Sup. 3 (1970), 285-294.
MR 0278238 |
Zbl 0204.54802
[3] Cheeger J., Ebin D.G.:
Comparison Theorems in Riemannian Geometry. North-Holland, Amsterdam, 1975.
MR 0458335 |
Zbl 1142.53003
[4] James I.M.:
The Topology of Stiefel Manifolds. Cambridge University Press, Lecture Note Series 24, Great Britain, 1976.
MR 0431239 |
Zbl 0337.55017
[5] Jensen G.R.:
Einstein metrics on principal fibre bundles. J. Diff. Geom. 8 (1973), 599-614.
MR 0353209 |
Zbl 0284.53038
[6] Kobayashi S.:
Topology of positively pinched Kähler manifolds. Tôhoku Math. J. 15 (1963), 121-139.
MR 0154235 |
Zbl 0114.37601
[7] Kobayashi S., Nomizu K.:
Foundations of Differential Geometry, Vol II. Interscience, New York, 1969.
MR 0238225 |
Zbl 0526.53001
[8] Kowalski O., Vlášek Z.:
Homogeneous Einstein metrics on Aloff-Wallach spaces. Diff. Geom. Appl. 3 (1993), 157-167.
MR 1243541
[10] Wang M.:
Some examples of homogeneous Einstein manifolds in dimension seven. Duke Math. J. 49.1 (1982), 23-28.
MR 0650366 |
Zbl 0488.53035
[11] Wang M., Ziller W.:
On normal homogeneous Einstein metrics. Ann. Sci. Éc. Norm. Sup. 18 (1985), 563-633.
MR 0839687