Previous |  Up |  Next

Article

Keywords:
countable compactness; ${M\kern -1.8pt A\kern 0.2pt }_{countable}$; topological groups; finite powers
Summary:
We will show that under ${M\kern -1.8pt A\kern 0.2pt }_{countable}$ for each $k \in \Bbb N$ there exists a group whose $k$-th power is countably compact but whose $2^k$-th power is not countably compact. In particular, for each $k \in \Bbb N$ there exists $l \in [k,2^k)$ and a group whose $l$-th power is countably compact but the $l+1$-st power is not countably compact.
References:
[1] Comfort W.W.: Topological Groups. Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 1143-1263. MR 0776643 | Zbl 1071.54019
[2] Comfort W.W.: Problems on topological groups and other homogeneous spaces. Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, 1990, pp. 311-347. MR 1078657
[3] Comfort W.W., Hofmann K.H., Remus D.: Topological groups and semigroups. Recent Progress in General Topology (M. Hušek and J. van Mill, eds.), Elsevier Science Publishers, 1992, pp. 57-144. MR 1229123 | Zbl 0798.22001
[4] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups. Pacific J. Math. 16.3 (1966), 483-496. MR 0207886 | Zbl 0214.28502
[5] van Douwen E.K.: The product of two countably compact topological groups. Trans. Amer. Math. Soc. 262 (Dec. 1980), 417-427. MR 0586725 | Zbl 0453.54006
[6] Hajnal A., Juhász I.: A separable normal topological group need not be Lindelöf. Gen. Top. and its Appl. 6 (1976), 199-205. MR 0431086
[7] Hart K.P., van Mill J.: A countably compact $H$ such that $H\times H$ is not countably compact. Trans. Amer. Math. Soc. 323 (Feb. 1991), 811-821. MR 0982236
[8] Tkachenko M.G.: Countably compact and pseudocompact topologies on free abelian groups. Izvestia VUZ. Matematika 34 (1990), 68-75. MR 1083312 | Zbl 0714.22001
[9] Tomita A.H.: Between countable and sequential compactness in free abelian group. preprint.
[10] Tomita A.H.: A group under $MA_{countable}$ whose square is countably compact but whose cube is not. preprint.
[11] Tomita A.H.: The Wallace Problem: a counterexample from $M A_{countable}$ and $p$-compactness. to appear in Canadian Math. Bulletin.
[12] Weiss W.: Versions of Martin's Axiom. Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 827-886. MR 0776638 | Zbl 0571.54005
Partner of
EuDML logo