Previous |  Up |  Next

Article

Keywords:
concentration function; random walk; Markov operator; invariant measure
Summary:
Let $G$ be a Polish group with an invariant metric. We characterize those probability measures $\mu$ on $G$ so that there exist a sequence $g_n \in G$ and a compact set $A \subseteq G$ with \, ${\mu}^{*n} (g_n A) \equiv 1$ \, for all $n$.
References:
[1] Bartoszek W.: On concentrated probabilities. Ann. Polon. Math. 61.1 (1995), 25-38. MR 1318315 | Zbl 0856.22006
[2] Bartoszek W.: The structure of random walks on semidirect products. Bull. L'Acad. Pol. Sci. ser. Sci. Math. Astr. & Phys. 43.4 (1995), 277-282. MR 1414784 | Zbl 0849.22006
[3] Csiszár I.: On infinite products of random elements and infinite convolutions of probability distributions on locally compact groups. Z. Wahrsch. Verw. Gebiete 5 (1966), 279-299. MR 0205306
[4] Jaworski W., Rosenblatt J., Willis G.: Concentration functions in locally compact groups. preprint, 17 pages, 1995. MR 1399711 | Zbl 0854.43001
[5] Parthasarathy K.R.: Introduction to Probability and Measure. New Delhi, 1980. Zbl 1075.28001
[6] Sine R.: Geometric theory of a single Markov operator. Pacif. J. Math. 27.1 (1968), 155-166. MR 0240281 | Zbl 0281.60083
Partner of
EuDML logo