Article
Keywords:
concentration function; random walk; Markov operator; invariant measure
Summary:
Let $G$ be a Polish group with an invariant metric. We characterize those probability measures $\mu$ on $G$ so that there exist a sequence $g_n \in G$ and a compact set $A \subseteq G$ with \, ${\mu}^{*n} (g_n A) \equiv 1$ \, for all $n$.
References:
[2] Bartoszek W.:
The structure of random walks on semidirect products. Bull. L'Acad. Pol. Sci. ser. Sci. Math. Astr. & Phys. 43.4 (1995), 277-282.
MR 1414784 |
Zbl 0849.22006
[3] Csiszár I.:
On infinite products of random elements and infinite convolutions of probability distributions on locally compact groups. Z. Wahrsch. Verw. Gebiete 5 (1966), 279-299.
MR 0205306
[4] Jaworski W., Rosenblatt J., Willis G.:
Concentration functions in locally compact groups. preprint, 17 pages, 1995.
MR 1399711 |
Zbl 0854.43001
[5] Parthasarathy K.R.:
Introduction to Probability and Measure. New Delhi, 1980.
Zbl 1075.28001
[6] Sine R.:
Geometric theory of a single Markov operator. Pacif. J. Math. 27.1 (1968), 155-166.
MR 0240281 |
Zbl 0281.60083