Previous |  Up |  Next

Article

Keywords:
weak$^*$-extreme points; equivalent norm; nonreflexive Banach spaces
Summary:
Every separable nonreflexive Banach space admits an equivalent norm such that the set of the weak$^*$-extreme points of the unit ball is discrete.
References:
[G] Godun B.V.: Preserved extreme points. Funct. Anal. i Prilož. 19 (1985), 76-77. MR 0800926 | Zbl 0591.46004
[GLT] Godun B.V., Bor-Luh Lin, Troyanski S.L.: On the strongly extreme points of convex bodies in separable Banach spaces. Proc. AMS 114 (1992), 673-675. MR 1070518
[J] James R.C.: Characterizations of reflexivity. Studia Math. 23 (1964), 205-216. MR 0170192 | Zbl 0113.09303
[LP] Lindenstrauss J., Phelps R.R.: Extreme point properties of convex bodies in reflexive Banach spaces. Israel J. Math. 6 (1968), 39-48. MR 0234260 | Zbl 0157.43802
[P] Phelps R.R.: Dentability and extreme points in Banach spaces. Journal of Functional Analysis 17 (1974), 78-90. MR 0352941 | Zbl 0287.46026
[R] Rosenthal H.P.: On norm-attaining functionals and the equivalence of the weak$^*$-KMP with the RNP. Longhorn Notes, The University of Texas at Austin, 1985/86, pp. 1-12. MR 1017038
[S] Stegall C.: Vorlesungen aus dem Fachbereich Mathematik der Universität Essen. Heft 10, 1983, pp. 1-61.
Partner of
EuDML logo