Previous |  Up |  Next

Article

Keywords:
topological vector space; inductive limits
Summary:
We establish the relationship between regularity of a Hausdorff $(LB)_{tv}$-space and its properties like (K), M.c.c., sequential completeness, local completeness. We give a sufficient and necessary condition for a Hausdorff $(LB)_{tv}$-space to be an $(LS)_{tv}$-space. A factorization theorem for $(LN)_{tv}$-spaces with property (K) is also obtained.
References:
[1] Adasch N., Ernst B., Keim D.: Topological Vector Spaces. Springer Verlag, Berlin, 1978. MR 0487376 | Zbl 0397.46005
[2] Burzyk I., Kliś C., Lipecki Z.: On metrizable abelian groups with completeness-type property. Colloq. Math. 49 (1984), 33-39. MR 0774847
[3] Perez-Carreras P., Bonet I.: Barrelled locally convex spaces. Math. Studies 131, NorthHolland, 1987. Zbl 0614.46001
[4] Dierolf S.: Personal communication.
[5] Fernandez C.: Regularity conditions on $(LF)$-spaces. Arch Math. 54 (1990), 380-383. MR 1042132 | Zbl 0669.46003
[6] Floret K.: Lokalkonvexe Sequenzen mit kompakten Abbildungen. I. reine angew. Math. 247 (1972), 155-195. MR 0287271
[7] Floret K.: Folgeretraktive Sequenzen Lokalkonvexen Räume. I. reine angew. Math. 259 (1973), 65-85. MR 0313748
[8] Floret K.: On bounded sets in inductive limits of normed spaces. Proc. Amer. Math. Soc. 75 (1979), 221-225. MR 0532140 | Zbl 0425.46055
[9] Gilsdorf T.E.: Regular inductive limits of $K$-spaces. Collectanea Math. 42 (1) (1991-92), 45-49. MR 1181061
[10] Grothendieck A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16 (1955). MR 0075539 | Zbl 0123.30301
[11] Iyahen S.O.: On certain classes of linear topological spaces. Proc. London Math. Soc. 18 (3) (1968), 285-307. MR 0226358 | Zbl 0165.14203
[12] Kąkol J.: Remarks on regular $(LF)$-spaces. Rend. Circ. Mat. di Palermo 42 (1993), 453-458. MR 1283356 | Zbl 0813.46005
[13] Kąkol J.: On inductive limits of topological algebras. Colloq. Math. 47 (1982), 71-78. MR 0679386
[14] Labuda I., Lipecki Z.: On subseries convergent series and $m$-quasi-bases in topological linear spaces. Manuscripta Math. 38 (1982), 87-98. MR 0662771 | Zbl 0496.46006
[15] Neus H.: Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen. Manuscripta Math. 25 (1978), 135-145. MR 0482036 | Zbl 0389.46058
[16] Pfister H.: Bemerkungen zum Satz über die Separabilität der Fréchet-Montel-Räume. Arch. Math. 27 (1976), 86-92. MR 0417729 | Zbl 0318.46005
[17] Wagner R.: Topological lineare induktive Limiten mit abzählbaren kompakten Spektrum. I. reine angew. Math. 261 (1973), 209-215. MR 0330996
[18] Makarov B.M.: Über einige pathologische Eigenschaften induktiver Limiten von $B$-Räumen (in Russian). Uspehi Mat. Nauk 18 (1963), 171-178.
[19] Vogt D.: Regularity properties of $(LF)$-spaces. Progress in Functional Analysis (Peniscala 1990), 57-84, North-Holland, Math. Studies 170, North-Holland, Amsterdam, 1992. MR 1150738 | Zbl 0779.46005
Partner of
EuDML logo